Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 26(4): 609-622, 2024 04 05.
Article in English | MEDLINE | ID: mdl-37767814

ABSTRACT

BACKGROUND: Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents. The small molecule Vismodegib allosterically inhibits SMO, the main upstream activator of SHH. Vismodegib has proven effective in the treatment of MB in mice and in clinical studies. However, due to irreversible premature epiphyseal growth plate fusions after systemic application to infant mice and children, its implementation to pediatric patients has been limited. Intraventricular Vismodegib application might provide a promising novel treatment strategy for pediatric medulloblastoma patients. METHODS: Infant medulloblastoma-bearing Math1-cre::Ptch1Fl/Fl mice were treated with intraventricular Vismodegib in order to evaluate efficacy on tumor growth and systemic side effects. RESULTS: We show that intraventricular Vismodegib treatment of Math1-cre::Ptch1Fl/Fl mice leads to complete or partial tumor remission only 2 days after completed treatment. Intraventricular treatment also significantly improved symptom-free survival in a dose-dependent manner. At the same time, intraventricular application prevented systemic side effects in the form of anatomical or histological bone deformities. CONCLUSIONS: We conclude that intraventricular application of a SHH pathway inhibitor combines the advantages of a specific treatment agent with precise drug delivery and might evolve as a promising new way of targeted treatment for SHH MB patients.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Pyridines , Humans , Mice , Animals , Child , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Medulloblastoma/metabolism , Hedgehog Proteins/metabolism , Anilides/pharmacology , Anilides/therapeutic use , Disease Models, Animal , Cerebellar Neoplasms/pathology
2.
Blood Adv ; 2(19): 2554-2567, 2018 10 09.
Article in English | MEDLINE | ID: mdl-30301811

ABSTRACT

Receptor tyrosine kinase (RTK)-dependent signaling has been implicated in the pathogenesis of acute lymphoblastic leukemia (ALL) of childhood. However, the RTK-dependent signaling state and its interpretation with regard to biological behavior are often elusive. To decipher signaling circuits that link RTK activity with biological output in vivo, we established patient-derived xenograft ALL (PDX-ALL) models with dependencies on fms-like tyrosine kinase 3 (FLT3) and platelet-derived growth factor receptor ß (PDGFRB), which were interrogated by phosphoproteomics using iTRAQ mass spectrometry. Signaling circuits were determined by receptor type and cellular context with few generic features, among which we identified group I p21-activated kinases (PAKs) as potential therapeutic targets. Growth factor stimulation markedly increased catalytic activities of PAK1 and PAK2. RNA interference (RNAi)-mediated or pharmacological inhibition of PAKs using allosteric or adenosine triphosphate (ATP)-competitive compounds attenuated cell growth and increased apoptosis in vitro. Notably, PAK1- or PAK2-directed RNAi enhanced the antiproliferative effects of the type III RTK and protein kinase C inhibitor midostaurin. Treatment of FLT3- or PDGFRB-dependent ALLs with ATP-competitive PAK inhibitors markedly decreased catalytic activities of both PAK isoforms. In FLT3-driven ALL, this effect was augmented by coadministration of midostaurin resulting in synergistic effects on growth inhibition and apoptosis. Finally, combined treatment of FLT3 D835H PDX-ALL with the ATP-competitive group I PAK inhibitor FRAX486 and midostaurin in vivo significantly prolonged leukemia progression-free survival compared with midostaurin monotherapy or control. Our study establishes PAKs as potential downstream targets in RTK-dependent ALL of childhood, the inhibition of which might help prevent the selection or acquisition of resistance mutations toward tyrosine kinase inhibitors.


Subject(s)
Antineoplastic Agents/pharmacology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , p21-Activated Kinases/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Child , Disease Models, Animal , Gene Expression Regulation, Leukemic/drug effects , Humans , Lymphopoiesis/genetics , Mice , Precursor Cell Lymphoblastic Leukemia-Lymphoma/etiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/genetics , Protein-Tyrosine Kinases/metabolism , Proteome , Treatment Outcome , Xenograft Model Antitumor Assays , p21-Activated Kinases/genetics , p21-Activated Kinases/metabolism
3.
J Biomed Mater Res B Appl Biomater ; 103(1): 169-78, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24811046

ABSTRACT

The insertion of cochlear implants (CIs) often causes fibrous tissue growth around the electrode, which leads to attenuation of function of CIs. Inhibition of fibrosis in vivo using dexamethasone (Dex) released from the implant base material (polydimethylsiloxane [PDMS]) coated with a protein repelling hydrogel (star-shaped polyethylene glycol prepolymer, sPEG) was, therefore, the aim of the study. PDMS filaments with Dex or sPEG were implanted into guinea pigs. The hearing status after implantation did not differ significantly in the treated groups. Using confocal laser scanning microscopy in transparent whole mount preparations, Dex, Dex/sPEG, as well as sPEG showed a tendency toward reduced formation of connective tissue around the implant. To apply such coatings for glass fibers for optical stimulation of the inner ear, insertion forces were measured into a human scala tympani model using fibers with sPEG coating. The results show that the hydrogel did not reduce insertion forces compared to the uncoated samples. However, PDMS-embedded fibers provide comparable insertion forces and depth to those measured with conventional CI electrodes, demonstrating the suitability of laser fibers for a minimal traumatic cochlear implantation.


Subject(s)
Cochlear Implants , Dexamethasone/chemistry , Dimethylpolysiloxanes/chemistry , Hydrogels/chemistry , Materials Testing , Animals , Fibrosis/etiology , Fibrosis/pathology , Guinea Pigs , Humans
4.
J Biomed Mater Res A ; 102(2): 442-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23533184

ABSTRACT

The insertion of cochlear implants into the inner ear often causes inflammation and fibrosis inside the scala tympani and thus growth of fibrous tissue on the implant surface. This deposition leads to the loss of function in both electrical and laser-based implants. The design of this study was to realize fibroblast growth inhibition by dexamethasone (Dex) released from the base material of the implant [polydimethylsiloxane (PDMS)]. To prevent cell and protein adhesion, the PDMS was coated with a hydrogel layer [star-shaped polyethylene glycol prepolymer (sPEG)]. Drug release rates were studied over 3 months, and surface characterization was performed. It was observed that the hydrogel slightly smoothened the surface roughened by the Dex crystals. The hydrogel coating reduced and prolonged the release of the drug over several months. Unmodified, sPEG-coated, Dex-loaded, and Dex/sPEG-equipped PDMS filaments were cocultivated in vitro with fluorescent fibroblasts, analyzed by fluorescent microscopy, and quantified by cell counting. Compared to the unmodified PDMS, cell growth on all modified filaments was averagely 95% ±standard deviation (SD) less, while cell growth on the bottom of the culture dishes containing Dex-loaded filaments was reduced by 70% ±SD. Both, Dex and sPEG prevented direct cell growth on the filament surfaces, while drug delivery was maintained for the duration of several months.


Subject(s)
Anti-Inflammatory Agents/chemistry , Coated Materials, Biocompatible/chemistry , Cochlear Implants , Dexamethasone/chemistry , Dimethylpolysiloxanes/chemistry , Hydrogels/chemistry , Materials Testing , Nylons/chemistry , Animals , Delayed-Action Preparations/chemistry , Fibroblasts/cytology , Fibroblasts/metabolism , Mice , Time Factors
5.
Hear Res ; 306: 145-55, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23968822

ABSTRACT

Neuron counting in the cochlea is a crucial but time-consuming operation for which various methods have been developed. To improve simplicity and efficiency, we tested an imaging method of the cochlea, and based on Confocal Laser Scanning Microscopy (CLSM), we visualised Rosenthal's Canal and quantified the spiral ganglion neurons (SGN) within. Cochleae of 8 normal hearing guinea pigs and one implanted with a silicone filament were fixed in paraformaldehyde (PFA), decalcified, dehydrated and cleared in Spalteholz solution. Using the tissue's autofluorescence, CLSM was performed at 100 fold magnification generating z-series stacks of about 20 slices of the modiolus. In 5 midmodiolar slices per cochlea the perimeters of the Rosenthal's Canal were surveyed, representative neuron diameters were measured and the neurons first counted manually and then software-assisted. For comparison, 8 normal hearing guinea pig cochleae were embedded in paraffin and examined similarly. The CLSM method has the advantage that the cochleae remain intact as an organ and keep their geometrical structure. Z-stack creation is nearly fully-automatic and frequently repeatable with various objectives and step sizes and without visible bleaching. The tissue shows minimal or no shrinking artefacts and damage typical of embedding and sectioning. As a result, the cells in the cleared cochleae reach an average diameter of 21 µm and a density of about 18 cells/10,000 µm(2) with no significant difference between the manual and the automatical counts. Subsequently we compared the CLSM data with those generated using the established method of paraffin slides, where the SGN reached a mean density of 9.5 cells/10,000 µm(2) and a mean soma diameter of 13.6 µm. We were able to prove that the semi-automatic CLSM method is a simple and effective technique for auditory neuron count. It provides a high grade of tissue preservation and the automatic stack-generation as well as the counter software reduces the effort considerably. In addition this visualisation technique offers the potential to detect the position and orientation of cochlear implants (CI) within the cochlea and tissue growing in the scala tympani around the CI and at the position of the cochleostomy due to the fact that the implant does not have to be removed to perform histology as in case of the paraffin method.


Subject(s)
Cochlea/pathology , Microscopy, Confocal , Spiral Ganglion/pathology , Animals , Automation , Cochlear Implants , Deafness/pathology , Edetic Acid/chemistry , Evoked Potentials, Auditory, Brain Stem/physiology , Formaldehyde/chemistry , Guinea Pigs , Image Processing, Computer-Assisted , Neurons/metabolism , Polymers/chemistry , Scala Tympani/pathology , Software , Spiral Ganglion/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...