Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
FASEB J ; 38(6): e23575, 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38530256

ABSTRACT

Ischemia-reperfusion injury (IRI) is one of the primary clinical causes of acute kidney injury (AKI). The key to IRI lies in immune-inflammatory damage, where dendritic cells (DCs) play a central role in eliciting immune responses within the context of inflammation induced by ischemia-reperfusion. Our previous study has confirmed that delayed ischemic preconditioning (DIPC) can reduce the kidney injury by mediating DCs to regulate T-cells. However, the clinical feasibility of DIPC is limited, as pre-clamping of the renal artery is not applicable for the prevention and treatment of ischemia-reperfusion acute kidney injury (I/R-AKI) in clinical patients. Therefore, the infusion of DCs as a substitute for DIPC presents a more viable strategy for preventing renal IRI. In this study, we further evaluated the impact and mechanism of infused tolerogenic CD11c+DCs on the kidneys following IRI by isolating bone marrow-derived dendritic cells and establishing an I/R-AKI model after pre-infusion of DCs. Renal function was significantly improved in the I/R-AKI mouse model after pre-infused with CD11c+DCs. The pro-inflammatory response and oxidative damage were reduced, and the levels of T helper 2 (Th2) cells and related anti-inflammatory cytokines were increased, which was associated with the reduction of autologous DCs maturation mediated by CD11c+DCs and the increase of regulatory T-cells (Tregs). Next, knocking out CD11c+DCs, we found that the reduced immune protection of tolerogenic CD11c+DCs reinfusion was related to the absence of own DCs. Together, pre-infusion of tolerogenic CD11c+DCs can replace the regulatory of DIPC on DCs and T-cells to alleviate I/R-AKI. DC vaccine is expected to be a novel avenue to prevent and treat I/R-AKI.


Subject(s)
Acute Kidney Injury , Ischemic Preconditioning , Reperfusion Injury , Humans , Animals , Mice , Kidney , Ischemia , Acute Kidney Injury/prevention & control , Reperfusion Injury/prevention & control , Reperfusion , Dendritic Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...