Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 199
Filter
1.
Nat Neurosci ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961230

ABSTRACT

Dopaminergic neurons play a crucial role in associative learning, but their capacity to regulate behavior on subsecond timescales remains debated. It is thought that dopaminergic neurons drive certain behaviors by rapidly modulating striatal spiking activity; however, a view has emerged that only artificially high (that is, supra-physiological) dopamine signals alter behavior on fast timescales. This raises the possibility that moment-to-moment striatal spiking activity is not strongly shaped by dopamine signals in the physiological range. To test this, we transiently altered dopamine levels while monitoring spiking responses in the ventral striatum of behaving mice. These manipulations led to only weak changes in striatal activity, except when dopamine release exceeded reward-matched levels. These findings suggest that dopaminergic neurons normally play a minor role in the subsecond modulation of striatal dynamics in relation to other inputs and demonstrate the importance of discerning dopaminergic neuron contributions to brain function under physiological and potentially nonphysiological conditions.

2.
Am J Cancer Res ; 14(6): 3010-3035, 2024.
Article in English | MEDLINE | ID: mdl-39005682

ABSTRACT

Pancreatic adenocarcinoma (PAAD), known as one of the deadliest cancers, is characterized by a complex tumor microenvironment, primarily comprised of cancer-associated fibroblasts (CAFs) in the extracellular matrix. These CAFs significantly alter the matrix by interacting with hyaluronic acid (HA) and the enzyme hyaluronidase, which degrades HA - an essential process for cancer progression and spread. Despite the critical role of this interaction, the specific functions of CAFs and hyaluronidase in PAAD development are not fully understood. Our study investigates this interaction and assesses NSC777201, a new anti-cancer compound targeting hyaluronidase. This research utilized computational methods to analyze gene expression data from the Gene Expression Omnibus (GEO) database, specifically GSE172096, comparing gene expression profiles of cancer-associated and normal fibroblasts. We conducted in-house sequencing of pancreatic cancer cells treated with NSC777201 to identify differentially expressed genes (DEGs) and performed functional enrichment and pathway analysis. The identified DEGs were further validated using the TCGA-PAAD and Human Protein Atlas (HPA) databases for their diagnostic, prognostic, and survival implications, accompanied by Ingenuity Pathway Analysis (IPA) and molecular docking of NSC777201, in-vitro, and preclinical in-vivo validations. The result revealed 416 DEGs associated with CAFs and 570 DEGs related to NSC777201 treatment, with nine overlapping DEGs. A key finding was the transmembrane protein TMEM2, which strongly correlated with FAP, a CAF marker, and was associated with higher-risk groups in PAAD. NSC777201 treatment showed inhibition of TMEM2, validated by rescue assay, indicating the importance of targeting TMEM2. Further analyses, including IPA, demonstrated that NSC777201 regulates CAF cell senescence, enhancing its therapeutic potential. Both in-vitro and in-vivo studies confirmed the inhibitory effect of NSC777201 on TMEM2 expression, reinforcing its role in targeting PAAD. Therefore, TMEM2 has been identified as a theragnostic biomarker in PAAD, influenced by CAF activity and HA accumulation. NSC777201 exhibits significant potential in targeting and potentially reversing critical processes in PAAD progression, demonstrating its efficacy as a promising therapeutic agent.

3.
Am J Cancer Res ; 14(6): 3198-3199, 2024.
Article in English | MEDLINE | ID: mdl-39005678

ABSTRACT

[This corrects the article on p. 2598 in vol. 13, PMID: 37424807.].

5.
Front Oncol ; 14: 1404628, 2024.
Article in English | MEDLINE | ID: mdl-38800385

ABSTRACT

Background: Cancer stem cells (CSCs) have emerged as pivotal players in tumorigenesis, disease progression, and resistance to therapies. Objective: This comprehensive review delves into the intricate relationship between CSCs and the cell-of-origin in diverse cancer types. Design: Comprehensive review of thematically-relevant literature. Methods: We explore the underlying molecular mechanisms that drive the conversion of normal cells into CSCs and the impact of the cell-of-origin on CSC properties, tumor initiation, and therapeutic responses. Moreover, we discuss potential therapeutic interventions targeting CSCs based on their distinct cell-of-origin characteristics. Results: Accruing evidence suggest that the cell-of-origin, the cell type from which the tumor originates, plays a crucial role in determining the properties of CSCs and their contribution to tumor heterogeneity. Conclusion: By providing critical insights into the complex interplay between CSCs and their cellular origins, this article aims to enhance our understanding of cancer biology and pave the way for more effective and personalized cancer treatments.

6.
Dermatol Clin ; 42(3): 429-438, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38796274

ABSTRACT

Psoriatic arthritis (PsA) is a systemic chronic inflammatory disease that develops in up to 30% of patients with psoriasis. Mixed data variably support the potential ability to "prevent" and/or delay PsA through use of systemic therapies in psoriasis patients. Though intriguing, almost all of these studies are retrospective in nature, and hold substantial limitations and potential biases that challenge the ability to meaningfully interpretation their results. Thus, the authors believe prospective observational and interventional studies are crucial to understanding our ability to truly modify the transition from psoriasis to psoriatic arthritis and delay or prevent PsA onset.


Subject(s)
Arthritis, Psoriatic , Arthritis, Psoriatic/prevention & control , Humans , Prospective Studies , Observational Studies as Topic
7.
Cell Syst ; 15(5): 462-474.e5, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754366

ABSTRACT

Single-cell expression dynamics, from differentiation trajectories or RNA velocity, have the potential to reveal causal links between transcription factors (TFs) and their target genes in gene regulatory networks (GRNs). However, existing methods either overlook these expression dynamics or necessitate that cells be ordered along a linear pseudotemporal axis, which is incompatible with branching trajectories. We introduce Velorama, an approach to causal GRN inference that represents single-cell differentiation dynamics as a directed acyclic graph of cells, constructed from pseudotime or RNA velocity measurements. Additionally, Velorama enables the estimation of the speed at which TFs influence target genes. Applying Velorama, we uncover evidence that the speed of a TF's interactions is tied to its regulatory function. For human corticogenesis, we find that slow TFs are linked to gliomas, while fast TFs are associated with neuropsychiatric diseases. We expect Velorama to become a critical part of the RNA velocity toolkit for investigating the causal drivers of differentiation and disease.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , RNA , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Regulatory Networks/genetics , Cell Differentiation/genetics , RNA/genetics , RNA/metabolism , Single-Cell Analysis/methods , Gene Expression Regulation/genetics
8.
Genes (Basel) ; 15(5)2024 04 27.
Article in English | MEDLINE | ID: mdl-38790194

ABSTRACT

Depression is heritable, differs by sex, and has environmental risk factors such as cigarette smoking. However, the effect of single nucleotide polymorphisms (SNPs) on depression through cigarette smoking and the role of sex is unclear. In order to examine the association of SNPs with depression and smoking in the UK Biobank with replication in the COPDGene study, we used counterfactual-based mediation analysis to test the indirect or mediated effect of SNPs on broad depression through the log of pack-years of cigarette smoking, adjusting for age, sex, current smoking status, and genetic ancestry (via principal components). In secondary analyses, we adjusted for age, sex, current smoking status, genetic ancestry (via principal components), income, education, and living status (urban vs. rural). In addition, we examined sex-stratified mediation models and sex-moderated mediation models. For both analyses, we adjusted for age, current smoking status, and genetic ancestry (via principal components). In the UK Biobank, rs6424532 [LOC105378800] had a statistically significant indirect effect on broad depression through the log of pack-years of cigarette smoking (p = 4.0 × 10-4) among all participants and a marginally significant indirect effect among females (p = 0.02) and males (p = 4.0 × 10-3). Moreover, rs10501696 [GRM5] had a marginally significant indirect effect on broad depression through the log of pack-years of cigarette smoking (p = 0.01) among all participants and a significant indirect effect among females (p = 2.2 × 10-3). In the secondary analyses, the sex-moderated indirect effect was marginally significant for rs10501696 [GRM5] on broad depression through the log of pack-years of cigarette smoking (p = 0.01). In the COPDGene study, the effect of an SNP (rs10501696) in GRM5 on depressive symptoms and medication was mediated by log of pack-years (p = 0.02); however, no SNPs had a sex-moderated mediated effect on depressive symptoms. In the UK Biobank, we found SNPs in two genes [LOC105378800, GRM5] with an indirect effect on broad depression through the log of pack-years of cigarette smoking. In addition, the indirect effect for GRM5 on broad depression through smoking may be moderated by sex. These results suggest that genetic regions associated with broad depression may be mediated by cigarette smoking and this relationship may be moderated by sex.


Subject(s)
Depression , Polymorphism, Single Nucleotide , Humans , Male , Female , Depression/genetics , Depression/epidemiology , Middle Aged , Aged , Smoking/genetics , Sex Factors , Genetic Predisposition to Disease , United Kingdom/epidemiology , Cigarette Smoking/genetics , Cigarette Smoking/adverse effects , Risk Factors
9.
Biomed Pharmacother ; 175: 116717, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749179

ABSTRACT

Knee osteoarthritis (OA) involves articular cartilage degradation driven mainly by inflammation. Kaempferol (KM), known for its anti-inflammatory property, holds potential for OA treatment. This study investigated the potential of hyaluronic acid (HA)-coated gelatin nanoparticles loaded with KM (HA-KM GNP) for treating knee OA. KM was encapsulated into gelatin nanoparticles (KM GNP) and then coated with HA to form HA-KM GNPs. Physical properties were characterized, and biocompatibility and cellular uptake were assessed in rat chondrocytes. Anti-inflammatory and chondrogenic properties were evaluated using IL-1ß-stimulated rat chondrocytes, compared with HA-coated nanoparticles without KM (HA GNP) and KM alone. Preclinical efficacy was tested in an anterior cruciate ligament transection (ACLT)-induced knee OA rat model treated with intra-articular injection of HA-KM GNP. Results show spherical HA-KM GNPs (88.62 ± 3.90 nm) with positive surface charge. Encapsulation efficiency was 98.34 % with a sustained release rate of 18 % over 48 h. Non-toxic KM concentration was 2.5 µg/mL. In IL-1ß-stimulated OA rat chondrocytes, HA-KM GNP significantly down-regulated RNA expression of IL-1ß, TNF-α, COX-2, MMP-9, and MMP-13, while up-regulating SOX9 compared to HA GNP, and KM. In vivo imaging demonstrated significantly higher fluorescence intensity within rat knee joints for 3 hours post HA-KM GNP injection compared with KM GNP (185.2% ± 34.1% vs. 45.0% ± 16.7%). HA-KM GNP demonstrated significant effectiveness in reducing subchondral sclerosis, attenuating inflammation, inhibiting matrix degradation, restoring cartilage thickness, and reducing the severity of OA in the ACLT rat model. In conclusion, HA-KM GNP holds promise for knee OA therapy.


Subject(s)
Chondrocytes , Hyaluronic Acid , Kaempferols , Nanoparticles , Osteoarthritis, Knee , Rats, Sprague-Dawley , Animals , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Osteoarthritis, Knee/drug therapy , Osteoarthritis, Knee/pathology , Kaempferols/pharmacology , Kaempferols/administration & dosage , Nanoparticles/chemistry , Injections, Intra-Articular , Rats , Chondrocytes/drug effects , Chondrocytes/metabolism , Chondrocytes/pathology , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/administration & dosage , Cartilage, Articular/drug effects , Cartilage, Articular/pathology , Interleukin-1beta/metabolism , Cells, Cultured
10.
Elife ; 122024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526916

ABSTRACT

The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.


Subject(s)
Dopamine , Receptors, Dopamine D1 , Mice , Animals , Receptors, Dopamine D1/metabolism , Corpus Striatum/physiology , Neostriatum/physiology , Gait , Mice, Transgenic
12.
Int J Mol Sci ; 25(1)2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38203779

ABSTRACT

Despite significant advances in treatment modalities, colorectal cancer (CRC) remains a poorly understood and highly lethal malignancy worldwide. Cancer stem cells (CSCs) and the tumor microenvironment (TME) have been shown to play critical roles in initiating and promoting CRC progression, metastasis, and treatment resistance. Therefore, a better understanding of the underlying mechanisms contributing to the generation and maintenance of CSCs is crucial to developing CSC-specific therapeutics and improving the current standard of care for CRC patients. To this end, we used a bioinformatics approach to identify increased CD24/SOX4 expression in CRC samples associated with poor prognosis. We also discovered a novel population of tumor-infiltrating CD24+ cancer-associated fibroblasts (CAFs), suggesting that the CD24/SOX4-centered signaling hub could be a potential therapeutic target. Pathway networking analysis revealed a connection between the CD24/SOX4-centered signaling, ß-catenin, and DPP4. Emerging evidence indicates that DPP4 plays a role in CRC initiation and progression, implicating its involvement in generating CSCs. Based on these bioinformatics data, we investigated whether sitagliptin, a DPP4 inhibitor and diabetic drug, could be repurposed to inhibit colon CSCs. Using a molecular docking approach, we demonstrated that sitagliptin targeted CD24/SOX4-centered signaling molecules with high affinity. In vitro experimental data showed that sitagliptin treatment suppressed CRC tumorigenic properties and worked in synergy with 5FU and this study thus provided preclinical evidence to support the alternative use of sitagliptin for treating CRC.


Subject(s)
Colorectal Neoplasms , Sitagliptin Phosphate , Humans , Sitagliptin Phosphate/pharmacology , Sitagliptin Phosphate/therapeutic use , Dipeptidyl Peptidase 4 , Drug Repositioning , Molecular Docking Simulation , beta Catenin , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Tumor Microenvironment , SOXC Transcription Factors/genetics , CD24 Antigen
13.
bioRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37873374

ABSTRACT

The striatum serves an important role in motor control, and neurons in this area encode the body's initiation, cessation, and speed of locomotion. However, it remains unclear whether the same neurons also encode the step-by-step rhythmic motor patterns of individual limbs that characterize gait. By combining high-speed video tracking, electrophysiology, and optogenetic tagging, we found that a sizable population of both D1 and D2 receptor expressing medium spiny projection neurons (MSNs) were phase-locked to the gait cycle of individual limbs in mice. Healthy animals showed balanced limb phase-locking between D1 and D2 MSNs, while dopamine depletion led to stronger phase-locking in D2 MSNs. These findings indicate that striatal neurons represent gait on a single-limb and step basis, and suggest that elevated limb phase-locking of D2 MSNs may underlie some of the gait impairments associated with dopamine loss.

14.
Life Sci ; 335: 122255, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37967792

ABSTRACT

BACKGROUND: Cancer metastasis is a major cause of cancer-related deaths, emphasizing the urgent need for effective therapies. Although it has been shown that GMI, a fungal protein from Ganoderma microsporum, could suppress primary tumor growth in a wide spectrum of cancer types, it is still unclear whether GMI exhibits anti-metastasis properties, particularly in lung cancers. Further investigation is needed. AIMS AND OBJECTIVES: The objective of this study is to investigate the potential inhibitory effects of GMI on lung cancer metastasis in vivo. Utilizing systematic and comprehensive approaches, our research aims to elucidate the underlying molecular mechanisms responsible for the anti-metastatic effects. MATERIALS AND METHODS: In vitro migration and cell adhesion assays addressed the epithelial-to-mesenchymal transition (EMT)-related phenotype. Proteomic and bioinformatic analyses identified the GMI-regulated proteins and cellular responses. GMI-treated LLC1-bearing mice were analyzed using IVIS Spectrum to assess the anti-metastatic effect. KEY FINDINGS: GMI inhibits EMT as well as cell migration. GMI disrupts cell adhesion and downregulates integrin, resulting in inhibition of phosphorylated FAK. GMI induces macropinocytosis and lysosome-mediated degradation of integrin αv, α5, α6 and ß1. GMI downregulates Slug via inhibition of FAK activity, which in turn enhances expressions of epithelial-related markers and decreases cell mobility. Mechanistically, GMI-induced FAK inhibition engenders MDM2 expression and enhances MDM2/p21/Slug complex formation, leading to Slug degradation. GMI treatment reduces the metastatic pulmonary lesion and prolongs the survival of LLC1-bearing mice. SIGNIFICANCE: Our findings highlight GMI as a promising therapeutic candidate for metastatic lung cancers, offering potential avenues for further research and drug development.


Subject(s)
Lung Neoplasms , Animals , Mice , Lung Neoplasms/pathology , Focal Adhesions/metabolism , Focal Adhesions/pathology , Proteomics , Cell Line, Tumor , Cell Movement , Epithelial-Mesenchymal Transition , Neoplasm Metastasis/pathology
15.
Int J Mol Sci ; 24(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38003585

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive and lethal primary brain tumor whose median survival is less than 15 months. The current treatment regimen comprising surgical resectioning, chemotherapy with Temozolomide (TMZ), and adjuvant radiotherapy does not achieve total patient cure. Stem cells' presence and GBM tumor heterogeneity increase their resistance to TMZ, hence the poor overall survival of patients. A dysregulated cell cycle in glioblastoma enhances the rapid progression of GBM by evading senescence or apoptosis through an over-expression of cyclin-dependent kinases and other protein kinases that are the cell cycle's main regulatory proteins. Herein, we identified and validated the biomarker and predictive properties of a chemoradio-resistant oncogenic signature in GBM comprising CDK1, PBK, and CHEK1 through our comprehensive in silico analysis. We found that CDK1/PBK/CHEK1 overexpression drives the cell cycle, subsequently promoting GBM tumor progression. In addition, our Kaplan-Meier survival estimates validated the poor patient survival associated with an overexpression of these genes in GBM. We used in silico molecular docking to analyze and validate our objective to repurpose Dapagliflozin against CDK1/PBK/CHEK1. Our results showed that Dapagliflozin forms putative conventional hydrogen bonds with CDK1, PBK, and CHEK1 and arrests the cell cycle with the lowest energies as Abemaciclib.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Molecular Docking Simulation , Cell Line, Tumor , Temozolomide/pharmacology , Temozolomide/therapeutic use , Computational Biology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Brain Neoplasms/pathology , Antineoplastic Agents, Alkylating/pharmacology , Drug Resistance, Neoplasm/genetics , Checkpoint Kinase 1/genetics , CDC2 Protein Kinase/genetics
16.
Am J Transl Res ; 15(7): 4504-4520, 2023.
Article in English | MEDLINE | ID: mdl-37560206

ABSTRACT

OBJECTIVES: Diabetic nephropathy (DN) is one of the most prevalent secondary complications associated with diabetes mellitus. Decades of research have implicated multiple pathways in the etiology and pathophysiology of diabetic nephropathy. There has been no reliable predictive biomarkers for the onset or progression of DN and no successful treatments are available. METHODS: In the present study, we explored the datasets of RNA sequencing data from patients with Type II diabetes mellitus (T2DM)-induced nephropathy to identify a novel gene signature. We explored the target bioactive compounds identified from Azanza garckeana, a medicinal plant commonly used by the traditional treatment of diabetes nephropathy. RESULTS: Our analysis identified lymphotoxin beta (LTB), SRY-box transcription factor 4 (SOX4), SOX9, and WAP four-disulfide core domain protein 2 (WFDC2) as novel signatures of T2DM-induced nephropathy. Additional analysis revealed the pathological involvement of the signature in cell-cell adhesion, immune, and inflammatory responses during diabetic nephropathy. Molecular docking and dynamic simulation at 100 ns conducted studies revealed that among the three compounds, Terpinen-4-ol exhibited higher binding efficacies (binding energies (ΔG) = -3.9~5.5 kcal/mol) against the targets. The targets, SOX4, and SOX9 demonstrated higher druggability towards the three compounds. WFDC2 was the least attractive target for the compounds. CONCLUSION: The present study was relevant in the diagnosis, prognosis, and treatment follow up of patients with diabetes induced nephropathy. The study provided an insight into the therapeutic application of the bioactive principles from Azanza garckeana. Continued follow-up invitro validations study are ongoing in our laboratory.

17.
Am J Cancer Res ; 13(6): 2598-2616, 2023.
Article in English | MEDLINE | ID: mdl-37424807

ABSTRACT

Despite the therapeutic advancement with chemotherapy and targeted therapy against non-small-cell lung cancer (NSCLC), most patients ultimately develop resistance to these drugs, exhibiting disease progression, metastasis, and worse prognosis. There is, therefore, a need for the development of novel multi-targeted therapies that can offer a high therapeutic index with lesser chances of drug resistance against NSCLC. In the present study, we evaluated the therapeutic potential of a novel multi-target small molecule NLOC-015A for targeted treatment of NSCLC. Our in vitro studies revealed that NLOC-015A exhibited a broad spectrum of anticancer activities against lung cancer cell line. NLOC-015A decreased the viability of H1975 and H1299 cells with respective IC50 values of 2.07±0.19 and 1.90±0.23 µm. In addition, NLOC-015A attenuated the oncogenic properties (colony formation, migratory ability, and spheroid formation) with concomitant downregulation of expression levels of epidermal growth factor receptor (EGFR)/mammalian target of rapamycin (mTOR)/AKT, nuclear factor (NF)-κB, signaling network. In addition, the stemness inhibitory effect of NLOC0-15A was accompanied by decreased expression levels of aldehyde dehydrogenase (ALDH), MYC Proto-Oncogene (C-Myc), and (sex-determining region Y)-box 2 (SOX2) in both H1975 and H1299 cell lines. Furthermore, NLOC-015A suppressed the tumor burden and increased the body weight and survival of H1975 xenograft-bearing mice. Treatment with NLOC-015A also attenuated biochemical and hematological alterations in the tumor bearing mice. Interestingly, NLOC-015A synergistically enhanced the in vitro efficacy, and therapeutic outcome of osimertinib in vivo. In addition, the toxicity of osimertinib was significantly attenuated by combination with NLOC-015A. Altogether, our findings suggested that combining osimertinib with NLOC-015 appears to be a promising way to improve osimertinib's efficacy and achieve better therapeutic results against NSCLC. We therefore suggest that NLOC-015A might represent a new candidate for treating NSCLC via acting as a multitarget inhibitor of EGFR/mTOR/NF-Κb signaling networks and efficiently compromising the oncogenic phenotype of NSCLC.

18.
Cureus ; 15(6): e41218, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37397681

ABSTRACT

Metastatic adrenocortical carcinoma (ACC) often has a poor outcome, with a five-year survival of less than 25%. We report a rare case of metastatic ACC with a myxoid variant with chromothripsis. We review the histologic variants of ACC, including myxoid type, molecular drivers, and current and investigational therapies for adrenocortical carcinoma. We also discuss the mechanism of chromothripsis, chromothripsis in ACC tumorigenesis, and propose potential therapies targeting chromothripsis.

19.
Biomedicines ; 11(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37509650

ABSTRACT

Tumor angiogenesis and lymphangiogenesis pathways have been identified as important therapeutic targets in non-small cell lung cancer (NSCLC). Bevacizumab, which is a monoclonal antibody, was the initial inhibitor of angiogenesis and lymphangiogenesis that received approval for use in the treatment of advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. Despite its usage, patients may still develop resistance to the treatment, which can be attributed to various histological subtypes and the initiation of treatment at advanced stages of cancer. Due to their better specificity, selectivity, and safety compared to chemotherapy, small molecules have been approved for treating advanced NSCLC. Based on the development of multiple small-molecule antiangiogenic drugs either in house and abroad or in other laboratories to treat NSCLC, we used a quinoline-derived small molecule-HN-N07-as a potential target drug for NSCLC. Accordingly, we used computational simulation tools and evaluated the drug-likeness properties of HN-N07. Moreover, we identified target genes, resulting in the discovery of the target BIRC5/HIF1A/FLT4 pro-angiogenic genes. Furthermore, we used in silico molecular docking analysis to determine whether HN-N07 could potentially inhibit BIRC5/HIF1A/FLT4. Interestingly, the results of docking HN-N07 with the BIRC5, FLT4, and HIF1A oncogenes revealed unique binding affinities, which were significantly higher than those of standard inhibitors. In summary, these results indicate that HN-N07 shows promise as a potential inhibitor of oncogenic signaling pathways in NSCLC. Ongoing studies that involve in vitro experiments and in vivo investigations using tumor-bearing mice are in progress, aiming to evaluate the therapeutic effectiveness of the HN-N07 small molecule.

20.
Int J Mol Sci ; 24(12)2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37373393

ABSTRACT

Amongst the most prevalent malignancies worldwide, head and neck squamous cell carcinoma (HNSCC) is characterized by high morbidity and mortality. The failure of standard treatment modalities, such as surgery, radiotherapy, and chemotherapy, demands the need for in-depth understanding of the complex signaling networks involved in the development of treatment resistance. A tumor's invasive growth and high levels of intrinsic or acquired treatment resistance are the primary causes of treatment failure. This may be a result of the presence of HNSCC's cancer stem cells, which are known to have self-renewing capabilities that result in therapeutic resistance. Using bioinformatics methods, we discovered that elevated expressions of MET, STAT3, and AKT were associated with poor overall survival in HNSCC patients. We then evaluated the therapeutic potential of our newly synthesized small molecule HNC018 towards its potential as a novel anticancer drug. Our computer-aided structure characterization and target identification study predicted that HNC018 could target these oncogenic markers implicated in HNSCC. Subsequently, the HNC018 has demonstrated its anti-proliferative and anticancer activities towards the head and neck squamous cell carcinoma cell lines, along with displaying the stronger binding affinities towards the MET, STAT3, and AKT than the standard drug cisplatin. Reduction in the clonogenic and tumor-sphere-forming ability displays HNC018's role in decreasing the tumorigenicity. Importantly, an vivo study has shown a significant delay in tumor growth in HNC018 alone or in combination with cisplatin-treated xenograft mice model. Collectively with our findings, HNC018 highlights the desirable properties of a drug-like candidate and could be considered as a novel small molecule for treating head and neck squamous cell carcinoma.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , Humans , Animals , Mice , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Cisplatin/pharmacology , Cisplatin/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Multiomics , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Cell Line, Tumor , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...