Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Syst ; 15(5): 462-474.e5, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38754366

ABSTRACT

Single-cell expression dynamics, from differentiation trajectories or RNA velocity, have the potential to reveal causal links between transcription factors (TFs) and their target genes in gene regulatory networks (GRNs). However, existing methods either overlook these expression dynamics or necessitate that cells be ordered along a linear pseudotemporal axis, which is incompatible with branching trajectories. We introduce Velorama, an approach to causal GRN inference that represents single-cell differentiation dynamics as a directed acyclic graph of cells, constructed from pseudotime or RNA velocity measurements. Additionally, Velorama enables the estimation of the speed at which TFs influence target genes. Applying Velorama, we uncover evidence that the speed of a TF's interactions is tied to its regulatory function. For human corticogenesis, we find that slow TFs are linked to gliomas, while fast TFs are associated with neuropsychiatric diseases. We expect Velorama to become a critical part of the RNA velocity toolkit for investigating the causal drivers of differentiation and disease.


Subject(s)
Cell Differentiation , Gene Regulatory Networks , RNA , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Regulatory Networks/genetics , Cell Differentiation/genetics , RNA/genetics , RNA/metabolism , Single-Cell Analysis/methods , Gene Expression Regulation/genetics
2.
Mol Cell ; 83(8): 1350-1367.e7, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37028419

ABSTRACT

The mammalian SWI/SNF (mSWI/SNF or BAF) family of chromatin remodeling complexes play critical roles in regulating DNA accessibility and gene expression. The three final-form subcomplexes-cBAF, PBAF, and ncBAF-are distinct in biochemical componentry, chromatin targeting, and roles in disease; however, the contributions of their constituent subunits to gene expression remain incompletely defined. Here, we performed Perturb-seq-based CRISPR-Cas9 knockout screens targeting mSWI/SNF subunits individually and in select combinations, followed by single-cell RNA-seq and SHARE-seq. We uncovered complex-, module-, and subunit-specific contributions to distinct regulatory networks and defined paralog subunit relationships and shifted subcomplex functions upon perturbations. Synergistic, intra-complex genetic interactions between subunits reveal functional redundancy and modularity. Importantly, single-cell subunit perturbation signatures mapped across bulk primary human tumor expression profiles both mirror and predict cBAF loss-of-function status in cancer. Our findings highlight the utility of Perturb-seq to dissect disease-relevant gene regulatory impacts of heterogeneous, multi-component master regulatory complexes.


Subject(s)
Chromatin Assembly and Disassembly , Neoplasms , Animals , Humans , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Chromatin/genetics , Mammals/metabolism
3.
Bioinformatics ; 37(Suppl_1): i349-i357, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34252956

ABSTRACT

MOTIVATION: Recent advances in single-cell RNA-sequencing (scRNA-seq) technologies promise to enable the study of gene regulatory associations at unprecedented resolution in diverse cellular contexts. However, identifying unique regulatory associations observed only in specific cell types or conditions remains a key challenge; this is particularly so for rare transcriptional states whose sample sizes are too small for existing gene regulatory network inference methods to be effective. RESULTS: We present ShareNet, a Bayesian framework for boosting the accuracy of cell type-specific gene regulatory networks by propagating information across related cell types via an information sharing structure that is adaptively optimized for a given single-cell dataset. The techniques we introduce can be used with a range of general network inference algorithms to enhance the output for each cell type. We demonstrate the enhanced accuracy of our approach on three benchmark scRNA-seq datasets. We find that our inferred cell type-specific networks also uncover key changes in gene associations that underpin the complex rewiring of regulatory networks across cell types, tissues and dynamic biological processes. Our work presents a path toward extracting deeper insights about cell type-specific gene regulation in the rapidly growing compendium of scRNA-seq datasets. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. AVAILABILITY AND IMPLEMENTATION: The code for ShareNet is available at http://sharenet.csail.mit.edu and https://github.com/alexw16/sharenet.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Bayes Theorem , Information Dissemination , Sequence Analysis, RNA , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...