Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 31(21): 30353-30369, 2024 May.
Article in English | MEDLINE | ID: mdl-38637485

ABSTRACT

Chitosan stands out as the only known polysaccharide of its kind, second only to cellulose. As the second-largest biopolymer globally, chitosan and its derivatives are extensively used in diverse areas such as metal anti-corrosion prevention, food production, and medical fields. Its benefits include environmental friendliness, non-toxicity, cost-effectiveness, and biodegradability. Notably, the use of chitosan and its derivatives has gained substantial attention and has been extensively researched in the fields of metal anti-corrosion prevention and antibacterial applications. By means of chemical modification or synergistic action, the inherent limitations of chitosan can be substantially improved, thereby enhancing its biological and physicochemical properties to meet a wider range of applications and more demanding application requirements. This article offers a comprehensive review of chitosan and its modified composite materials, focusing on the enhancement of their anticorrosion and antibacterial properties, as well as the mechanisms by which they serve as anticorrosion and antibacterial agents. Additionally, it summarizes the synthesis routes of various modification methods of chitosan and their applications in different fields, aiming to contribute to the interdisciplinary development and potential applications of chitosan in various areas.


Subject(s)
Chitosan , Chitosan/chemistry , Chitosan/pharmacology , Corrosion , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
2.
J Diabetes Investig ; 10(2): 446-457, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29923322

ABSTRACT

AIMS/INTRODUCTION: In the present meta-analysis, we aimed to determine the effects of sodium-glucose cotransporter 2 inhibitor (SGLT-2i) in addition to insulin therapy on cardiovascular risk factors in type 2 diabetes patients. MATERIALS AND METHODS: Randomized controlled trials were identified by searching the PubMed, Embase and Cochrane Library databases published before September 2017. The intervention group received SGLT-2i as add-on treatment to insulin therapy, and the control group received placebos in addition to insulin. We assessed pooled data, including weighted mean differences and 95% confidence intervals (CIs) using a random-effects model. RESULTS: A total of 10 randomized controlled trials (n = 5,159) were eligible. The weighted mean differences for systolic blood pressure and diastolic blood pressure were -3.17 mmHg (95% CI -4.53, -1.80, I2 = 0%) and -1.60 mmHg (95% CI -2.52, -0.69, I2 = 0%) in the intervention groups. Glycosylated hemoglobin, fasting plasma glucose, postprandial glucose and daily insulin were also lower in the intervention groups, with relative weighted mean differences of -0.49% (95% CI -0.71, -0.28%, I2 = 92%), -1.10 mmol/L (95% CI -1.69, -0.51 mmol/L, I2 = 84%), -3.63 mmol/L (95% CI -4.36, -2.89, I2 = 0%) and -5.42 IU/day (95% CI -8.12, -2.72, I2 = 93%). The transformations of uric acid and bodyweight were -26.16 µmol/L (95% CI -42.14, -10.17, I2 = 80%) and -2.13 kg (95% CI -2.66, -1.60, I2 = 83%). The relative risk of hypoglycemia was 1.09 (95% CI 1.02, 1.17, P < 0.01). The relative risks of urinary tract and genital infection were 1.29 (95% CI 1.03, 1.62, P = 0.03) and 5.25 (95% CI 3.55, 7.74, P < 0.01). CONCLUSIONS: The results showed that in the intervention group, greater reductions were achieved for blood pressure, glucose control, uric acid and bodyweight. This treatment regimen might therefore provide beneficial effects on the occurrence and development of cardiovascular events.


Subject(s)
Cardiovascular Diseases/chemically induced , Cardiovascular Diseases/epidemiology , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/adverse effects , Sodium-Glucose Transporter 2 Inhibitors/adverse effects , China/epidemiology , Drug Therapy, Combination , Humans , Incidence , Prognosis , Randomized Controlled Trials as Topic , Risk Factors
3.
Sci Rep ; 6: 32714, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27600499

ABSTRACT

Liraglutide, a glucagon-like peptide (GLP-1) receptor agonist, has showed favorable effects in the glycaemic control and weight reduction in patients with type 2 diabetes mellitus (T2DM). The meta-analysis was to compare the efficacy and safety of liraglutide added to metformin with other treatments in patients with T2DM. A systematic literature search on PubMed, Embase, Web of Science and the Cochrane library databases were performed. Eligible studies were randomized controlled trials (RCTs) of patients with T2DM who received the combination treatment of liraglutide and metformin. Pooled estimates were performed using a fixed-effects model or random-effects model. A total of nine RCTs met the inclusion criteria. Compared with control (placebo, sitagliptin, glimepiride, dulaglutide, insulin glargine, and NPH), liraglutide in combination with metformin resulted in significant reductions in HbA1c, bodyweight, FPG, and PPG, and similar reductions in SBP, and DBP. Moreover, liraglutide combined with metformin did not increase the risk of hypoglycemia, but induced a higher incidence of gastrointestinal disorders. In conclusion, this meta-analysis confirmed the use of liraglutide as add-on to metformin appeared to be effective and safe for patients with T2DM. However, considering the potential limitations in this study, more large-scale, well-conducted RCTs are needed to identify our findings.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/administration & dosage , Liraglutide/administration & dosage , Metformin/administration & dosage , Drug Therapy, Combination , Glycated Hemoglobin/metabolism , Humans , Randomized Controlled Trials as Topic
4.
ACS Appl Mater Interfaces ; 7(1): 232-40, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25485556

ABSTRACT

In this work, we demonstrate sputtered amorphous indium-gallium-zinc oxide thin-film transistors (a-IGZO TFTs) with a record high effective field-effect mobility of 174 cm(2)/V s by incorporating silver nanowire (AgNW) arrays to channel electron transport. Compared to the reference counterpart without nanowires, the over 5-fold enhancement in the effective field-effect mobility exhibits clear dependence on the orientation as well as the surface coverage ratio of silver nanowires. Detailed material and device analyses reveal that during the room-temperature IGZO sputtering indium and oxygen diffuse into the nanowire matrix while the nanowire morphology and good contact between IGZO and nanowires are maintained. The unchanged morphology and good interfacial contact lead to high mobility and air-ambient-stable characteristics up to 3 months. Neither hysteresis nor degraded bias stress reliability is observed. The proposed AgNW-mediated a-IGZO TFTs are promising for development of large-scale, flexible, transparent electronics.

SELECTION OF CITATIONS
SEARCH DETAIL
...