Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36896978

ABSTRACT

Despite numerous studies on broadband photodetectors, the problematic query that remains unaddressed is the limited photoresponsivity while broadening the spectral regime. Here, for the first time, a rational design of a hybrid 1D CdSe nanobelt/2D PbI2 flake heterojunction device is constructed, which substantially boosts the photocurrent while significantly attenuating the dark current, resulting in improved photodetector figures-of-merit. Thanks to the excellent quality of the nanobelt/flake and built-in electric field at the CdSe/PbI2 interface heterojunction, photogenerated carriers are promptly segregated and more photoexcitons are accumulated by the respective electrodes, enabling a high responsivity of ∼106 A/W, making this one of the highest values among similar reported hybrid heterojunction photodetectors, together with a large linear dynamic range, superior sensitivity, excellent detectivity and external quantum efficiency, an ultrafast response, and a broadband spectral response range. The similar 1D/2D hybrid heterojunction device architecture assembled on the flexible polyimide tape substrate exhibits excellent folding endurance and mechanical, flexural, and long-term environmental stability. The present device architecture and robust operational stability in an ambient environment reveals that the combination of the present 1D/2D hybrid heterojunction has incredible potential for future flexible photoelectronic devices.

2.
ACS Appl Mater Interfaces ; 14(17): 19659-19671, 2022 May 04.
Article in English | MEDLINE | ID: mdl-35438480

ABSTRACT

Low-cost multicomponent alloyed one-dimensional (1D) semiconductors exhibit broadband absorption from the ultraviolet to the near-infrared regime, which has attracted a great deal of interest in high-performance flexible optoelectronic devices. Here, we report the facile one-step fabrication of high-performance broadband rigid and flexible photodevices based on multicomponent alloyed 1D cadmium-sulfur-selenide (CdSxSe1-x) micro-nanostructures obtained via a vapor transport route. Photoresponse measurements have demonstrated their superior spectral photoresponsivity (5.8 × 104 A/W), several orders of magnitude higher than the pristine CdSe nanobelt photodevice, high specific detectivity (2 × 1015 Jones), photogain (1.2 × 105), external quantum efficiency (EQE, 1.4 × 107%), rapid response speed (13 ms), and excellent long-term environmental stability. The multicomponent alloyed CdSxSe1-x nanobelt photodevice demonstrated about three times higher photocurrent as well as can operate under multiple color illuminations (200-800 nm) and at a high applied bias of 10 V with the photoresponsivity and EQE being boosted to 4.34 × 105 A/W and 8.96 × 107%, respectively. Furthermore, multicomponent alloyed CdSxSe1-x nanobelt flexible photodevices show excellent mechanical and flexural photostabilities with identical photoresponse as rigid nanodevices. The improvement mechanism found in the present research can be exploited to lead to the design of high-performance flexible photodevices comprising other multicomponent nanomaterials.

3.
ACS Appl Mater Interfaces ; 11(38): 35005-35014, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31466452

ABSTRACT

Nanostructured photothermal membranes hold great potential for solar-driven seawater desalination; however, their pragmatic applications are often limited by substantial salt accumulation. To solve this issue, we have designed and prepared flexible and washable carbon-nanotube-embedded polyacrylonitrile nonwoven fabrics by a simple electrospinning route. The wet fabric exhibits a strong photoabsorption in a wide spectral range (350-2500 nm), and it has a photoabsorption efficiency of 90.8%. When coated onto a polystyrene foam, the fabric shows a high seawater evaporation rate of 1.44 kg m-2 h-1 under simulated sunlight irradiation (1.0 kW m-2). With a high concentration of simulated seawater as the model, the accumulation of solid salts can be clearly observed on the surface of the fabric, resulting in a severe decay of the evaporation rate. These salts can be effortlessly washed away from the fabric through a plain handwashing process. The washing process has a negligible influence on the morphology, photoabsorption, and evaporation performance of the fabric, demonstrating good durability. More importantly, a larger fabric can easily be fabricated, and the combination of washable fabrics with various parallel PS foams can facilitate the construction of large-scale outdoor evaporation devices, conferring the great potential for efficient desalination of seawater under natural sunlight.

4.
J Phys Condens Matter ; 29(35): 355402, 2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28580903

ABSTRACT

A series of Ti x V1-x O2 (0% ⩽ x ⩽ 4.48%) thin films on c-plane sapphire substrates have been fabricated by co-sputtering oxidation solutions, and the metal-insulator transition temperature (T MIT) of Ti x V1-x O2 films rises monotonically at the rate of 1.64 K/at.% Ti. The x-ray diffraction measurement results show that, after Ti4+ ion doping, the rutile structure expands along the c r axis while shrinking along the a r and b r axis simultaneously. It makes the V-O bond length shorter, which is believed to upshift the π * orbitals. The rising of π * orbitals in Ti-doped VO2 has been illustrated by ultraviolet-infrared spectroscopy and first-principles calculation. With the Ti4+ ion doping concentration increasing, the energy levels of π * orbitals are elevated and the electronic occupation of π * orbitals decreases, which weakens the shielding for the strong electron-electron correlations in the d|| orbital and result in the T MIT rising. The research reveals that the T MIT of VO2 can be effected by the electronic occupancy of π * orbitals in a rutile state, which is helpful for developing VO2-based thermal devices.

5.
Phys Chem Chem Phys ; 17(17): 11638-46, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25866849

ABSTRACT

A series of epitaxial V1-xWxO2 (0 ≤ x ≤ 0.76%) nanocrystalline films on c-plane sapphire substrates have been successfully synthesized. Orbital structures of V1-xWxO2 films with monoclinic and rutile states have been investigated by ultraviolet-infrared spectroscopy combined with first principles calculations. Experimental and calculated results show that the overlap of π* and d∥ orbitals increases with increasing W doping content for the rutile state. Meanwhile, in the monoclinic state, the optical band gap decreases from 0.65 to 0.54 eV with increasing W doping concentration. Clear evidence is found that the V1-xWxO2 thin film phase transition temperature change comes from orbital structure variations. This shows that, with increasing W doping concentration, the decrease of rutile d∥ orbital occupancy can reduce the strength of V-V interactions, which finally results in phase transition temperature decrease. The experimental results reveal that the d∥ orbital is very important for the VO2 phase transition process. Our findings open a possibility to tune VO2 phase transition temperature through orbital engineering.

6.
Sci Rep ; 4: 6544, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25292447

ABSTRACT

A domain wall, as a device, can bring about a revolution in developing manipulation of semiconductor heterostructures devices at the atom scale. However, it is a challenge for these new devices to control domain wall motion through insulator-metal transition of correlated-electron materials. To fully understand and harness this motion, it requires visualization of domain wall dynamics in real space. Here, domain wall dynamics in VO2 insulator-metal phase transition was observed directly by in situ TEM at atom scale. Experimental results depict atom scale evolution of domain morphologies and domain wall exact positions in (202) and (040) planes referring to rutile structure at 50°C. In addition, microscopic mechanism of domain wall dynamics and accurate lattice basis vector relationship of two domains were investigated with the assistance of X-ray diffraction, ab initio calculations and image simulations. This work offers a route to atom scale tunable heterostructure device application.

SELECTION OF CITATIONS
SEARCH DETAIL
...