Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 99
Filter
1.
Ecotoxicol Environ Saf ; 282: 116703, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38986335

ABSTRACT

3-methyl-4-nitrophenol (PNMC), a degradation product of organophosphorus insecticides and a byproduct of fuel combustion, exerting endocrine-disrupting effects. However, its impact on the meiotic process of oocytes remains unclear. In the present study, we investigated the effects of PNMC on meiotic maturation of mouse oocytes in vitro and related mechanisms. Morphologically, PNMC-exposure affected germinal vesicle breakdown (GVBD) and polar body extrusion (PBE) in mouse oocytes. Proteomic analysis suggested that PNMC-exposure altered oocyte protein expression that are associated with cytoskeleton, mitochondrial function and oxidative stress. Further studies demonstrated that PNMC-exposure disrupted spindle assembly and chromosome alignment, caused sustained activation of spindle assembly checkpoint (SAC), and arrested meiosis in oocytes. Specifically, PNMC-exposure interfered with the function of microtubule organizing centers (MTOCs) by significantly reducing phosphorylated mitogen activated protein kinase (p-MAPK) expression and disrupting the localization of Pericentrin and p-Aurora A, leading to spindle assembly failure. Besides, PNMC-exposure also increased α-tubulin acetylation, decreased microtubule stability. Moreover, PNMC-exposure impaired mitochondrial function, evidenced by abnormal mitochondrial distribution, decreased mitochondrial membrane potential and ATP levels, release of Cytochrome C into the cytoplasm, and elevated ROS levels. As a result, exposure to PNMC caused DNA damage and early apoptosis in oocytes. Fortunately, melatonin was able to promote oocyte maturation by removing the excessive ROS and enhancing mitochondrial function. These results highlight the adverse effects of PNMC on meiotic maturation, and underscore the protective role of melatonin against PNMC-induced damage.

2.
MedComm (2020) ; 5(8): e627, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39015557

ABSTRACT

Minimal hepatic encephalopathy (MHE) has a substantial impact on the clinical outcomes and quality of life (QOL) of patients with cirrhosis. However, timely diagnosis and intervention are challenging due to sophisticated diagnostic methods. In this study, 673 healthy controls and 905 patients with cirrhosis were screened, and 660 healthy controls and 757 patients with cirrhosis, divided into the test (292 patients) and validation (465 patients) cohort, were analyzed after screening. A diagnostic model of the Stroop test (Stroop-CN) was constructed by multivariate linear regression based on the results of healthy controls. The prevalence of MHE and the comparison results with psychometric hepatic encephalopathy score through the Stroop-CN model were stable in the test and validation cohorts. Moreover, the prevalence of MHE remained significantly higher in patients with worse disease conditions marked as high Child-Pugh grades and the Model for End-stage Liver Disease and Sodium (MELD-Na) scores in the test and validation cohort. The EuroQol 5-D questionnaire revealed that patients with MHE had a worse QOL than those without MHE both in the test and validation cohort. In conclusion, an easy and practical Stroop-CN model for MHE diagnosis based on the EncephalApp is established. It is found that a considerable number of Chinese patients with cirrhosis experience MHE, which significantly impacts their QOL.

3.
Eur J Med Chem ; 276: 116683, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39032403

ABSTRACT

A series of novel 2-arylmethoxy-4-(2-fluoromethyl-biphenyl-3-ylmethoxy) benzylamine derivatives was designed, synthesized, and evaluated for their antitumor effects as PD-1/PD-L1 inhibitors both in vitro and in vivo. Firstly, the ability of these compounds to block the PD-1/PD-L1 immune checkpoint was assessed using the homogeneous time-resolved fluorescence (HTRF) assay. Two of the compounds can strongly block the PD-1/PD-L1 interaction, with IC50 values of less than 10 nM, notably, compound HD10 exhibited significant clinical potential by inhibiting the PD-1/PD-L1 interaction with an IC50 value of 3.1 nM. Further microscale thermophoresis (MST) analysis demonstrated that HD10 had strong interaction with PD-L1 protein. Co-crystal structure (2.7 Å) analysis of HD10 in complex with the PD-L1 protein revealed a strong affinity between the compound and the target PD-L1 dimer. This provides a solid theoretical basis for further in vitro and in vivo studies. Next, a typical cell-based experiment demonstrated that HD10 could remarkably prevent the interaction of hPD-1 293 T cells from human recombinant PD-L1 protein, effectively restoring T cell function, and promoting IFN-γ secretion in a dose-dependent manner. Moreover, HD10 was effective in suppressing tumor growth (TGI = 57.31 %) in a PD-1/PD-L1 humanized mouse model without obvious toxicity. Flow cytometry, qPCR, and immunohistochemistry data suggested that HD10 inhibits tumor growth by activating the immune system in vivo. Based on these results, it seems likely that HD10 is a promising clinical candidate that should be further investigated.

4.
Radiol Cardiothorac Imaging ; 6(4): e230262, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39051878

ABSTRACT

Purpose To investigate free-breathing thoracic bright-blood four-dimensional (4D) dynamic MRI (dMRI) to characterize aeration of parenchymal lung tissue in healthy children and patients with thoracic insufficiency syndrome (TIS). Materials and Methods All dMR images in patients with TIS were collected from July 2009 to June 2017. Standardized signal intensity (sSI) was investigated, first using a lung aeration phantom to establish feasibility and sensitivity and then in a retrospective research study of 40 healthy children (16 male, 24 female; mean age, 9.6 years ± 2.1 [SD]), 20 patients with TIS before and after surgery (11 male, nine female; mean age, 6.2 years ± 4.2), and another 10 healthy children who underwent repeated dMRI examinations (seven male, three female; mean age, 9 years ± 3.6). Individual lungs in 4D dMR images were segmented, and sSI was assessed for each lung at end expiration (EE), at end inspiration (EI), preoperatively, postoperatively, in comparison to normal lungs, and in repeated scans. Results Air content changes of approximately 6% were detectable in phantoms via sSI. sSI within phantoms significantly correlated with air occupation (Pearson correlation coefficient = -0.96 [P < .001]). For healthy children, right lung sSI was significantly lower than that of left lung sSI (at EE: 41 ± 6 vs 47 ± 6 and at EI: 39 ± 6 vs 43 ± 7, respectively; P < .001), lung sSI at EI was significantly lower than that at EE (P < .001), and left lung sSI at EE linearly decreased with age (r = -0.82). Lung sSI at EE and EI decreased after surgery for patients (although not statistically significantly, with P values of sSI before surgery vs sSI after surgery, left and right lung separately, in the range of 0.13-0.51). sSI varied within 1.6%-4.7% between repeated scans. Conclusion This study demonstrates the feasibility of detecting change in sSI in phantoms via bright-blood dMRI when air occupancy changes. The observed reduction in average lung sSI after surgery in pediatric patients with TIS may indicate postoperative improvement in parenchymal aeration. Keywords: MR Imaging, Thorax, Lung, Pediatrics, Thoracic Surgery, Lung Parenchymal Aeration, Free-breathing Dynamic MRI, MRI Intensity Standardization, Thoracic Insufficiency Syndrome Supplemental material is available for this article. © RSNA, 2024.


Subject(s)
Lung , Magnetic Resonance Imaging , Phantoms, Imaging , Humans , Male , Female , Child , Magnetic Resonance Imaging/methods , Lung/diagnostic imaging , Retrospective Studies , Respiratory Insufficiency/diagnostic imaging , Respiration , Syndrome , Child, Preschool , Imaging, Three-Dimensional/methods
5.
Article in English | MEDLINE | ID: mdl-38957182

ABSTRACT

Organ segmentation is a fundamental requirement in medical image analysis. Many methods have been proposed over the past 6 decades for segmentation. A unique feature of medical images is the anatomical information hidden within the image itself. To bring natural intelligence (NI) in the form of anatomical information accumulated over centuries into deep learning (DL) AI methods effectively, we have recently introduced the idea of hybrid intelligence (HI) that combines NI and AI and a system based on HI to perform medical image segmentation. This HI system has shown remarkable robustness to image artifacts, pathology, deformations, etc. in segmenting organs in the Thorax body region in a multicenter clinical study. The HI system utilizes an anatomy modeling strategy to encode NI and to identify a rough container region in the shape of each object via a non-DL-based approach so that DL training and execution are applied only to the fuzzy container region. In this paper, we introduce several advances related to modeling of the NI component so that it becomes substantially more efficient computationally, and at the same time, is well integrated with the DL portion (AI component) of the system. We demonstrate a 9-40 fold computational improvement in the auto-segmentation task for radiation therapy (RT) planning via clinical studies obtained from 4 different RT centers, while retaining state-of-the-art accuracy of the previous system in segmenting 11 objects in the Thorax body region.

6.
Food Chem ; 457: 140199, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38955121

ABSTRACT

Plant-derived extracellular vesicles (PLEVs), as a type of naturally occurring lipid bilayer membrane structure, represent an emerging delivery vehicle with immense potential due to their ability to encapsulate hydrophobic and hydrophilic compounds, shield them from external environmental stresses, control release, exhibit biocompatibility, and demonstrate biodegradability. This comprehensive review analyzes engineering preparation strategies for natural vesicles, focusing on PLEVs and their purification and surface engineering. Furthermore, it encompasses the latest advancements in utilizing PLEVs to transport active components, serving as a nanotherapeutic system. The prospects and potential development of PLEVs are also discussed. It is anticipated that this work will not only address existing knowledge gaps concerning PLEVs but also provide valuable guidance for researchers in the fields of food science and biomedical studies, stimulating novel breakthroughs in plant-based therapeutic options.

7.
Heliyon ; 10(11): e32466, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38933958

ABSTRACT

Sirtuin 5 (Sirt5), a member of the Sirtuin family, is involved in various intracellular biological processes. However, the function of Sirt5 in oocyte maturation has not been clearly elucidated. In this study, we observed that Sirt5 was persistently expressed during the meiotic division of mouse oocytes, with a notable decline in expression in aging oocytes. Sirt5 inhibition led to the failure of the first polar body extrusion and induced cell cycle arrest, indicative of unsuccessful oocyte maturation. Furthermore, Sirt5 inhibition was associated with the extrusion of abnormally large polar bodies, suggesting disrupted asymmetric oocyte division. Mechanistically, the inhibition of Sirt5 resulted in aberrant spindle assembly and disordered chromosome alignment in oocytes. Moreover, Sirt5 inhibition caused the spindle to be centrally located in the oocyte without migrating to the cortical region, consequently preventing the formation of the actin cap. Further investigation revealed that Sirt5 inhibition notably diminished the expression of phosphorylated cofilin and profilin1, while increasing cytoplasmic F-actin levels. These findings suggest that Sirt5 inhibition during oocyte maturation adversely affects spindle assembly and chromosome alignment and disrupts actin dynamics impairing spindle migration and contributing to the failure of symmetric oocyte division and maturation.

8.
medRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746195

ABSTRACT

Purpose: There is a concern in pediatric surgery practice that rib-based fixation may limit chest wall motion in early onset scoliosis (EOS). The purpose of this study is to address the above concern by assessing the contribution of chest wall excursion to respiration before and after surgery. Methods: Quantitative dynamic magnetic resonance imaging (QdMRI) is performed on EOS patients (before and after surgery) and normal children in this retrospective study. QdMRI is purely an image-based approach and allows free breathing image acquisition. Tidal volume parameters for chest walls (CWtv) and hemi-diaphragms (Dtv) were analyzed on concave and convex sides of the spinal curve. EOS patients (1-14 years) and normal children (5-18 years) were enrolled, with an average interval of two years for dMRI acquisition before and after surgery. Results: CWtv significantly increased after surgery in the global comparison including all EOS patients (p < 0.05). For main thoracic curve (MTC) EOS patients, CWtv significantly improved by 50.24% (concave side) and 35.17% (convex side) after age correction (p < 0.05) after surgery. The average ratio of Dtv to CWtv on the convex side in MTC EOS patients was not significantly different from that in normal children (p=0.78), although the concave side showed the difference to be significant. Conclusion: Chest wall component tidal volumes in EOS patients measured via QdMRI did not decrease after rib-based surgery, suggesting that rib-based fixation does not impair chest wall motion in pediatric patients with EOS.

9.
bioRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746219

ABSTRACT

Background: A normative database of regional respiratory structure and function in healthy children does not exist. Methods: VGC provides a database with four categories of regional respiratory measurement parameters including morphological, architectural, dynamic, and developmental. The database has 3,820 3D segmentations (around 100,000 2D slices with segmentations). Age and gender group analysis and comparisons for healthy children were performed using those parameters via two-sided t-testing to compare mean measurements, for left and right sides at end-inspiration (EI) and end-expiration (EE), for different age and gender specific groups. We also apply VGC measurements for comparison with TIS patients via an extrapolation approach to estimate the association between measurement and age via a linear model and to predict measurements for TIS patients. Furthermore, we check the Mahalanobis distance between TIS patients and healthy children of corresponding age. Findings: The difference between male and female groups (10-12 years) behave differently from that in other age groups which is consistent with physiology/natural growth behavior related to adolescence with higher right lung and right diaphragm tidal volumes for females(p<0.05). The comparison of TIS patients before and after surgery show that the right and left components are not symmetrical, and the left side diaphragm height and tidal volume has been significantly improved after surgery (p <0.05). The left lung volume at EE, and left diaphragm height at EI of TIS patients after surgery are closer to the normal children with a significant smaller Mahalanobis distance (MD) after surgery (p<0.05). Interpretation: The VGC system can serve as a reference standard to quantify regional respiratory abnormalities on dMRI in young patients with various respiratory conditions and facilitate treatment planning and response assessment. Funding: The grant R01HL150147 from the National Institutes of Health (PI Udupa).

10.
medRxiv ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38746409

ABSTRACT

Purpose: Thoracic insufficiency syndrome (TIS) affects ventilatory function due to spinal and thoracic deformities limiting lung space and diaphragmatic motion. Corrective orthopedic surgery can be used to help normalize skeletal anatomy, restoring lung space and diaphragmatic motion. This study employs free-breathing dynamic MRI (dMRI) and quantifies the 3D motion of each hemi-diaphragm surface in normal and TIS patients, and evaluates effects of surgical intervention. Materials and Methods: In a retrospective study of 149 pediatric patients with TIS and 190 healthy children, we constructed 4D images from free-breathing dMRI and manually delineated the diaphragm at end-expiration (EE) and end-inspiration (EI) time points. We automatically selected 25 points uniformly on each hemi-diaphragm surface, calculated their relative velocities between EE and EI, and derived mean velocities in 13 homologous regions for each hemi-diaphragm to provide measures of regional 3D hemi-diaphragm motion. T-testing was used to compare velocity changes before and after surgery, and to velocities in healthy controls. Results: The posterior-central region of the right hemi-diaphragm exhibited the highest average velocity post-operatively. Posterior regions showed greater velocity changes after surgery in both right and left hemi-diaphragms. Surgical reduction of thoracic Cobb angle displayed a stronger correlation with changes in diaphragm velocity than reduction in lumbar Cobb angle. Following surgery, the anterior regions of the left hemi-diaphragm tended to approach a more normal state. Conclusion: Quantification of regional motion of the 3D diaphragm surface in normal subjects and TIS patients via free-breathing dMRI is feasible. Derived measurements can be assessed in comparison to normal subjects to study TIS and the effects of surgery.

11.
Crit Rev Biotechnol ; : 1-16, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38705840

ABSTRACT

5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.

12.
medRxiv ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38798322

ABSTRACT

Background: The diaphragm is a critical structure in respiratory function, yet in-vivo quantitative description of its motion available in the literature is limited. Research Question: How to quantitatively describe regional hemi-diaphragmatic motion and curvature via free-breathing dynamic magnetic resonance imaging (dMRI)? Study Design and Methods: In this prospective cohort study we gathered dMRI images of 177 normal children and segmented hemi-diaphragm domes in end-inspiration and end-expiration phases of the constructed 4D image. We selected 25 points uniformly located on each 3D hemi-diaphragm surface. Based on the motion and local shape of hemi-diaphragm at these points, we computed the velocities and sagittal and coronal curvatures in 13 regions on each hemi-diaphragm surface and analyzed the change in these properties with age and gender. Results: Our cohort consisted of 94 Females, 6-20 years (12.09 + 3.73), and 83 Males, 6-20 years (11.88 + 3.57). We observed velocity range: ∼2mm/s to ∼13mm/s; Curvature range -Sagittal: ∼3m -1 to ∼27m -1 ; Coronal: ∼6m -1 to ∼20m -1 . There was no significant difference in velocity between genders, although the pattern of change in velocity with age was different for the two groups. Strong correlations in velocity were observed between homologous regions of right and left hemi-diaphragms. There was no significant difference in curvatures between genders or change in curvatures with age. Interpretation: Regional motion/curvature of the 3D diaphragmatic surface can be estimated using free-breathing dynamic MRI. Our analysis sheds light on here-to-fore unknown matters such as how the pediatric 3D hemi-diaphragm motion/shape varies regionally, between right and left hemi-diaphragms, between genders, and with age.

13.
medRxiv ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38766023

ABSTRACT

Purpose: Analysis of the abnormal motion of thoraco-abdominal organs in respiratory disorders such as the Thoracic Insufficiency Syndrome (TIS) and scoliosis such as adolescent idiopathic scoliosis (AIS) or early onset scoliosis (EOS) can lead to better surgical plans. We can use healthy subjects to find out the normal architecture and motion of a rib cage and associated organs and attempt to modify the patient's deformed anatomy to match to it. Dynamic magnetic resonance imaging (dMRI) is a practical and preferred imaging modality for capturing dynamic images of healthy pediatric subjects. In this paper, we propose an auto-segmentation set-up for the lungs, kidneys, liver, spleen, and thoraco-abdominal skin in these dMRI images which have their own challenges such as poor contrast, image non-standardness, and similarity in texture amongst gas, bone, and connective tissue at several inter-object interfaces. Methods: The segmentation set-up has been implemented in two steps: recognition and delineation using two deep neural network (DL) architectures (say DL-R and DL-D) for the recognition step and delineation step, respectively. The encoder-decoder framework in DL-D utilizes features at four different resolution levels to counter the challenges involved in the segmentation. We have evaluated on dMRI sagittal acquisitions of 189 (near-)normal subjects. The spatial resolution in all dMRI acquisitions is 1.46 mm in a sagittal slice and 6.00 mm between sagittal slices. We utilized images of 89 (10) subjects at end inspiration for training (validation). For testing we experimented with three scenarios: utilizing (1) the images of 90 (=189-89-10) different (remaining) subjects at end inspiration for testing, (2) the images of the aforementioned 90 subjects at end expiration for testing, and (3) the images of the aforesaid 99 (=89+10) subjects but at end expiration for testing. In some situations, we can take advantage of already available ground truth (GT) of a subject at a particular respiratory phase to automatically segment the object in the image of the same subject at a different respiratory phase and then refining the segmentation to create the final GT. We anticipate that this process of creating GT would require minimal post hoc correction. In this spirit, we conducted separate experiments where we assume to have the ground truth of the test subjects at end expiration for scenario (1), end inspiration for (2), and end inspiration for (3). Results: Amongst these three scenarios of testing, for the DL-R, we achieve a best average location error (LE) of about 1 voxel for the lungs, kidneys, and spleen and 1.5 voxels for the liver and the thoraco- abdominal skin. The standard deviation (SD) of LE is about 1 or 2 voxels. For the delineation approach, we achieve an average Dice coefficient (DC) of about 0.92 to 0.94 for the lungs, 0.82 for the kidneys, 0.90 for the liver, 0.81 for the spleen, and 0.93 for the thoraco-abdominal skin. The SD of DC is lower for the lungs, liver, and the thoraco-abdominal skin, and slightly higher for the spleen and kidneys. Conclusions: Motivated by applications in surgical planning for disorders such as TIS, AIS, and EOS, we have shown an auto-segmentation system for thoraco-abdominal organs in dMRI acquisitions. This proposed setup copes with the challenges posed by low resolution, motion blur, inadequate contrast, and image intensity non-standardness quite well. We are in the process of testing its effectiveness on TIS patient dMRI data.

14.
Food Chem ; 451: 139497, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692240

ABSTRACT

The objective of this study was to evaluate the impacts of different drying technologies including microwave drying (MD), vacuum microwave drying (VMD), sun drying (SD), vacuum drying (VD), hot air drying (HAD), and vacuum freeze drying (VFD) on the physical characteristics, nutritional properties and antioxidant capacities of kiwifruit pomace in order to realize by-product utilization and improve energy efficiency. Results showed that both MD and VMD significantly reduced drying time by >94.6%, compared to traditional thermal drying which took 14-48 h. MD exhibited the highest content of soluble dietary fiber (9.5%) and the lowest energy consumption. Furthermore, VMD resulted in the highest content of vitamin C (198.78 mg/100 g) and reducing sugar (73.78%), and the antioxidant capacities ranked only second to VFD. Given the financial advantages and product quality, VMD was suggested to be advantageous technology in actual industrial production.


Subject(s)
Actinidia , Antioxidants , Desiccation , Fruit , Nutritive Value , Antioxidants/chemistry , Antioxidants/analysis , Actinidia/chemistry , Fruit/chemistry , Desiccation/methods , Desiccation/instrumentation , Freeze Drying , Food Handling/instrumentation , Food Handling/methods , Vacuum , Dietary Fiber/analysis
15.
Food Chem ; 449: 139214, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38581790

ABSTRACT

This study investigated the effects of ultrasound-assisted phosphorylation on gelling properties of fish gelatin (FG). Ultrasound-assisted phosphorylation (UP) for 60, 90, and 120 min resulted in >6.54% increase of phosphorylation degree and decreased zeta potential of FG. Atomic force microscopy revealed that UP-FGs showed larger aggregates than P-FGs (normal phosphorylation FGs). Low frequent-NMR and microstructure analysis revealed that phosphorylation enhanced water-binding capability of FG and improved the gel networks. However, UP60 had the highest gel strength (340 g), gelling (17.96 °C) and melting (26.54 °C) temperature while UP90 and UP120 showed slightly lower of them. FTIR analysis indicated thatß-sheet and triple helix content increased but random coil content decreased in phosphorylated FGs. Mass spectrometry demonstrated phosphate groups mainly bound to serine, threonine and tyrosine residues of FG and UP-FG exhibited more phosphorylation sites. The study showed that mild phosphorylation (UP60) could be applied to improve FG gel properties.


Subject(s)
Fish Proteins , Fishes , Gelatin , Gels , Gelatin/chemistry , Phosphorylation , Animals , Gels/chemistry , Fish Proteins/chemistry , Fish Products/analysis , Rheology
16.
Toxicol In Vitro ; 98: 105834, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38657713

ABSTRACT

Triphenyltin chloride (TPTCL) is widely used in various industrial and agricultural applications. This study aimed to elucidate the mechanisms underlying the toxicological effects of TPTCL on oocytes. The obtained findings revealed that TPTCL exposure reduced polar body extrusion (PBE) and induced meiotic arrest. Mechanistically, TPTCL disrupted meiotic spindle assembly and chromosome alignment. Further analysis indicated a significant decrease in p-MAPK expression, and disturbances in the localization of Pericentrin and p-Aurora A in TPTCL exposed oocytes, which suggesting impaired microtubule organizing center (MTOC)function. Moreover, TPTCL exposure enhance microtubule acetylation and microtubule instability. Therefore, the spindle assembly checkpoint (SAC) remained activated, and the activity of the anaphase-promoting complex (APC) was inhibited, thereby preventing oocytes from progressing into the entering anaphase I (AI) stage. TPTCL exposure also augmented the actin filaments in the cytoplasm. Notably, mitochondrial function appeared unaffected by TPTCL, as evidenced indicated by stable mitochondrial membrane potential and ATP content. Furthermore, TPTCL treatment altered H3K27me2, H3K27me3 and H3K9me3 levels, suggesting changes in epigenetic modifications in oocytes. Taken together, our results suggest that TPTCL disrupts cytoskeleton assembly, continuously activates SAC, inhibits APC activity, and blocks meiotic progression, ultimately impair oocyte maturation.


Subject(s)
Cytoskeleton , Meiosis , Oocytes , Organotin Compounds , Animals , Oocytes/drug effects , Meiosis/drug effects , Female , Cytoskeleton/drug effects , Organotin Compounds/toxicity , Mice , Mice, Inbred ICR , Cell Cycle/drug effects
17.
Eur J Med Chem ; 268: 116267, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38422701

ABSTRACT

PD-L1 is an important immune checkpoint protein that can bind to T cells' PD-1 receptor, thereby promoting immune escape from tumors. In recent years, many researchers have developed strategies to degrade PD-L1 to improve the effect of immunotherapy. The study of degrading PD-L1 provides new opportunities for immunotherapy. Here, we mainly summarize and review the current active molecules and mechanisms that mediate the degradation of immature and mature PD-L1 during the post-translational modification stages, involving PD-L1 phosphorylation, glycosylation, palmitoylation, ubiquitination, and the autophagy-lysosomal process. This review expects that by degrading PD-L1 protein, we will not only gain a better understanding of oncogenic mechanisms involving tumor PD-L1 protein but also provide a new way to improve immunotherapy.


Subject(s)
B7-H1 Antigen , Neoplasms , Humans , B7-H1 Antigen/metabolism , Neoplasms/metabolism , Protein Processing, Post-Translational , Immunotherapy , T-Lymphocytes
18.
J Agric Food Chem ; 72(8): 4339-4347, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38351620

ABSTRACT

This study aimed to investigate the role of the yeast cell wall and membrane in enhancing osmotic tolerance by antioxidant dipeptides (ADs) including Ala-His (AH), Thr-Tyr (TY), and Phe-Cys (FC). Results revealed that ADs could improve the integrity of the cell wall by restructuring polysaccharide structures. Specifically, FC significantly (p < 0.05) reduced the leakage of nucleic acid and protein by 2.86% and 5.36%, respectively, compared to the control. In addition, membrane lipid composition played a crucial role in enhancing yeast tolerance by ADs, including the increase of cell membrane integrity and the decrease of permeability by regulating the ratio of unsaturated fatty acids. The up-regulation of gene expression associated with the cell wall integrity pathway (RLM1, SLT2, MNN9, FKS1, and CHS3) and fatty acid biosynthesis (ACC1, HFA1, OLE1, ERG1, and FAA1) further confirmed the positive impact of ADs on yeast tolerance against osmotic stress.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Antioxidants/metabolism , Osmotic Pressure , Cell Wall/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Cell Membrane/metabolism , Chitin Synthase/metabolism
19.
ACS Appl Mater Interfaces ; 16(8): 9854-9867, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38375789

ABSTRACT

Extracellular vesicles (EVs) possess favorable biocompatibility and immunological characteristics, making them optimal carriers for bioactive substances. In this study, an innovative hepatic-targeted vesicle system encapsulating with fucoxanthin (GA-LpEVs-FX) was successfully designed and used to alleviate nonalcoholic fatty liver disease. The formulation entails the self-assembly of EVs derived from Lactobacillus paracasei (LpEVs), modification with glycyrrhetinic acid (GA) via amide reaction offering the system liver-targeting capacity and loading fucoxanthin (FX) through sonication treatment. In vitro experiments demonstrated that GA-LpEVs-FX effectively mitigated hepatic lipid accumulation and attenuated reactive oxygen species-induced damage resulting lipid accumulation (p < 0.05). In vivo, GA-LpEVs-FX exhibited significant downregulation of lipogenesis-related proteins, namely, fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC1), and sterol regulatory element binding protein 1 (SREBP-1), subsequently ameliorating lipid metabolism disorders (p < 0.05), and the stability of GA-LpEVs-FX significantly improved compared to free FX. These findings establish a novel formulation for utilizing foodborne components for nonalcoholic fatty liver disease alleviation.


Subject(s)
Non-alcoholic Fatty Liver Disease , Xanthophylls , Humans , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Biomimetics , Liver/metabolism , Lipids/pharmacology , Lipid Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...