Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(20)2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37895799

ABSTRACT

Increasing the water-cement ratio and water-reducer dosage of cement slurry enhances its fluidity. However, a high water-cement ratio diminishes the beneficial effects of water reducers on fluidity. The stone content of the slurry decreases as the water-reducer dosage increases. Additionally, the water-cement ratio significantly affects stone content. However, when the water-cement ratio exceeds a threshold value, stone content decreases. Furthermore, the threshold value of the water-cement ratio decreases with increasing water-reducer dosage. Without the addition of the water reducer, as the water-cement ratio increases the overall integrity of the grout stone decreases. The addition of the water reducer alters the surface pore distribution, wherein "uniform small pores" change to "localized large pores." Based on the multi-objective optimization of Matlab, the recommended optimal mix composition for a slow-setting cement slurry is a water-cement ratio of 0.25 and water-reducer dosage of 1.5%. With the use of this optimized mix composition, the stone content and compressive strength increase by 7.8% and 145.6%, respectively, compared to those obtained using the recommended mix ratio in the specifications. Additionally, all relevant performance parameters meet the requirements specified by previous standards.

2.
Dis Markers ; 2022: 2022958, 2022.
Article in English | MEDLINE | ID: mdl-36118676

ABSTRACT

Thrombospondin 2 (THBS2) is reported to participate in the development of calcific aortic valve disease (CAVD), while the effects are not elucidated completely. The study aimed to explore the role and mechanism of THBS2 in CAVD. Differentially expressed genes related to stenosis and sclerosis were screened through Limma package based on data from Gene Expression Omnibus (GEO), and the functional enrichment analysis was performed by the Database for Annotation, Visualization and Integrated Discovery (DAVID) database. The immunoreactivity of THBS2 in CAVD and normal samples was detected through immunohistochemistry. Valve interstitial cells (VICs) were transfected with short hairpin RNA against THBS2 (shTHBS2) and THBS2 overexpression plasmid and treated with LY294002 (Akt inhibitor) and induced osteogenic differentiation. The expression of THBS2 in CAVD and normal samples and the levels of THBS2, osteocalcin, Runx2, SPARC, COL1A2, COL1A1, SPP1, CTGF, MMP-2, MMP-13, Akt, p-Akt, p65, p-p65, and nuclear p65 in VICs were tested by qRT-PCR and Western blot. ALP activity was assessed using colorimetry. Calcic nodule formation was measured by Alizarin Red staining. THBS2 and PI3K-Akt pathway were differentially enriched in stenosis samples when compared with those in sclerosis samples. THBS2 expression was upregulated in CAVD and positively correlated with ALP activity, calcic nodule formation, osteogenic differentiation-related (osteocalcin, Runx2, SPARC, COL1A2, COL1A1, SPP1, and CTGF) and extracellular matrix- (ECM-) related (MMP-2 and MMP-13) factors in the process of osteogenic differentiation. ShTHBS2 suppressed ALP activity, calcic nodule formation, and osteogenic differentiation/ECM-related molecules while upregulating p-Akt/Akt, p-p65/p65, and nuclear p65 expressions in VICs during osteogenic differentiation. However, THBS2 overexpression had the opposite effect to shTHBS2, and LY294002 reversed the effect of shTHBS2. Collectively, overexpressed THBS2 induces the osteogenic differentiation of VICs via inhibiting Akt/NF-κB pathway to promote the development of CAVD.


Subject(s)
Aortic Valve Stenosis , Osteogenesis , Aortic Valve/pathology , Aortic Valve Stenosis/genetics , Calcinosis , Constriction, Pathologic , Core Binding Factor Alpha 1 Subunit/metabolism , Humans , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 2/metabolism , NF-kappa B/metabolism , Osteocalcin , Osteogenesis/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Small Interfering , Sclerosis , Signal Transduction , Thrombospondins
3.
J Bone Miner Metab ; 39(3): 360-371, 2021 May.
Article in English | MEDLINE | ID: mdl-33070258

ABSTRACT

INTRODUCTION: Calcified aortic valve disease (CAVD) is characterized by valve thickening and calcification. Osteoblast differentiation is one of the key steps of valve calcification. CircRNAs is involved in osteogenic differentiation of multiple mesenchymal cells. However, the function of circRNA TGFBR2 (TGFBR2) in CAVD remained unclear. We explored the effect and mechanism of TGFBR2 in modulating CAVD. MATERIALS AND METHODS: Human aortic valve interstitial cells (VICs) were subjected to osteogenic induction, and transfected with TGFBR2, miR-25-3p mimic and siTWIST1. The relationship between miR-25-3p and GFBR2 was predicted by starBase and confirmed by luciferase reporter and Person's correlation test. The relationship between miR-25-3p and TWIST1 was predicted by TargetScan and confirmed by luciferase reporter assay. The expressions of TGFBR2, miR-25-3p, TWIST1, osteoblast markers (RUNX2 and OPN) were detected by Western blot or/and qRT-PCR. Alkaline phosphatase (ALP) activity and calcium nodule was determined by colorimetric method and Alizarin Red S staining. RESULTS: The expression of TGFBR2 was down-regulated and that of miR-25-3p was up-regulated in calcific valves and osteogenic VICs. TGFBR2 was inversely correlated with miR-25-3p expression in calcific valves. TGFBR2 sponged miR-25-3p to regulate TWIST1 expression in osteogenic VICs. During osteogenic differentiation, ALP activity, calcium nodule, the levels of osteoblast markers were increased in VICs. MiR-25-3p overexpression or TWIST1 knockdown reversed the inhibitory effect of TGFBR2 overexpression on ALP activity, calcium nodule, the expressions of RUNX2 and OPN in osteogenic VICs. CONCLUSION: The findings indicated that TGFBR2/miR-25-3p/TWIST1 axis regulates osteoblast differentiation in VICs, supporting the fact that TGFBR2 is a miRNA sponge in CAVD.


Subject(s)
Aortic Valve/cytology , Cell Differentiation/genetics , MicroRNAs/metabolism , Nuclear Proteins/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , RNA, Circular/metabolism , Signal Transduction , Twist-Related Protein 1/metabolism , Aortic Valve/pathology , Aortic Valve Stenosis/genetics , Aortic Valve Stenosis/pathology , Base Sequence , Binding Sites , Calcinosis/genetics , Calcinosis/pathology , Cells, Cultured , Down-Regulation/genetics , Gene Knockdown Techniques , Humans , MicroRNAs/genetics , Osteogenesis/genetics , RNA, Circular/genetics , Receptor, Transforming Growth Factor-beta Type II/metabolism , Signal Transduction/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...