Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 14(45): 10129-10136, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37922336

ABSTRACT

Two-dimensional (2D) piezoelectric materials have attracted widespread attention due to their increasingly important niche applications in flexible nanoscale devices. The water-wetted graphene oxide papers exhibit scalable out-of-plane piezoelectricity induced by the hydrogen-bonded network within, and this system can be treated as a potential 2D piezoelectric candidate for future device applications. It triggered our interest to search for more 2D piezoelectric hydrogen-bonded networks. Ammonia (NH3) isoelectronic with water is introduced to generate NH3-wetted graphene oxide papers and realize their out-of-plane piezoelectricity. Their structures and piezoelectricity are investigated using first-principles calculations. They reveal ultrahigh piezoelectricity, compared to the best reported 2D materials. Their piezoelectricity is tuned by varying oxygen-containing functional groups in GO plates, confined NH3 layers, or orientations of NH3 molecules, and it could be applied to fabrication of ammonia sensors. Our study not only enriches the family of 2D piezoelectric nanosystems but also inspires their future experimental exploration.

2.
J Magn Reson Imaging ; 51(1): 311-318, 2020 01.
Article in English | MEDLINE | ID: mdl-31125166

ABSTRACT

BACKGROUND: Gadolinium-based contrast agents can be used to identify the blood-brain barrier (BBB) opening after inducing a focused ultrasound (FUS) cavitation effect in the presence of microbubbles. However, the use of gadolinium may be limited for frequent routine monitoring of the BBB opening in clinical applications. PURPOSE: To use a gradient-echo sequence without contrast agent administration for monitoring of acoustic cavitation. STUDY TYPE: Animal and phantom prospective. PHANTOM/ANIMAL MODEL: Static and flowing gel phantoms; six normal adult male Sprague-Dawley rats. FIELD STRENGTH/SEQUENCE: 3T, 7T; fast low-angle shot sequence. ASSESSMENT: Burst FUS with acoustic pressures = 1.5, 2.2, 2.8 MPa; pulse repetition frequencies = 1, 10,100 Hz; and duty cycles = 2%, 5%, 10% were transmitted to the chamber of a static phantom with microbubble concentrations = 10%, 1%, 0.1%. MR slice thicknesses = 3, 6, 8 mm were acquired. In flowing phantom experiments, 0.1%, 0.25%, 0.5%, 0.75%, and 1% microbubbles were infused and transmitted by burst FUS with an acoustic pressure = 0.4 and 1 MPa. In in vivo experiments, 0.25% microbubbles was infused and 0.8 MPa burst FUS was transmitted to targeted brain tissue beneath the superior sagittal sinus. The mean signal intensity (SI) was normalized using the mean SI from pre-FUS. STATISTICAL TESTS: Two-tailed Student's t-test. P < 0.05 was considered statistically significant. RESULTS: In the static phantom, the time courses of normalized SI decreases to minimum SI levels of 70-80%. In the flowing phantom, substantial normalized SI of 160-230% was present with variant acoustic pressures and microbubble concentrations. Compared with in vivo control rats, the brain tissue of experimental rats with transmission of FUS pulses exhibited considerable decreases of normalized SI (P < 0.001) because of the cavitation-induced perturbation of flow. DATA CONCLUSION: Observing gradient-echo SI changes can help monitor the targeted location of microbubble-enhanced FUS, which in turn assists the monitoring of the BBB opening. LEVEL OF EVIDENCE: 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:311-318.


Subject(s)
Blood-Brain Barrier/diagnostic imaging , Contrast Media , Gadolinium , Magnetic Resonance Imaging/methods , Microbubbles , Sonication/methods , Acoustics , Animals , Male , Models, Animal , Phantoms, Imaging , Rats , Rats, Sprague-Dawley
3.
Magn Reson Med ; 77(1): 102-111, 2017 01.
Article in English | MEDLINE | ID: mdl-26714923

ABSTRACT

PURPOSE: To investigate the feasibility of half-Fourier acquisition single-shot turbo spin-echo (HASTE) for real-time monitoring of signal changes because of water flow induced by inertial cavitation (IC) during microbubbles (MBs)-present focused ultrasound (FUS) exposure. THEORY AND METHODS: Strong turbulence produced in MB solution at the onset of IC results in the difficulty to refocus signal echoes and thus the decrease in signal intensity (SI). Fundamental investigations were conducted using an agar phantom containing MB dilutions exposed to 1.85-MHz FUS. The effects of various experimental conditions including MB concentrations, imaging slice thicknesses, chamber diameters, acoustic pressures, duty cycles, and pulse repetition frequencies (PRFs) were discussed. RESULTS: Continuous 2.8 MPa FUS exposure resulted in SI changed from 11% to 55% when MBs concentrations increased from 0.025% to 0.1%. When slice thickness increased from 3 mm to 6 or 8 mm, smaller SI changes were observed (84%, 59%, and 46%). Images acquired with chamber diameter of 6 and 3 mm showed SI changes of 84% and 35%, respectively. In burst modes, higher duty cycles exhibited higher SI changes, and lower PRFs exhibited smaller and longer SI decrease. CONCLUSION: Under various conditions, substantial signal changes were observable, suggesting the feasibility of applying HASTE to real-time monitor IC effect under FUS exposure. Magn Reson Med 77:102-111, 2017. © 2015 Wiley Periodicals, Inc.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Microbubbles , Contrast Media , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...