Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Sci ; 330: 111634, 2023 May.
Article in English | MEDLINE | ID: mdl-36775071

ABSTRACT

Class I small heat shock proteins (CI sHSPs), OsHsp16.9A and OsHsp18.0, share 74% identity in amino acid sequences and accumulate in response to heat shock treatments. Individual rice transformants overexpressing OsHsp16.9A and OsHsp18.0 exhibit distinct thermoprotection/thermotolerance modes. Under high temperature stress, OsHsp16.9A-overexpressing lines showed higher seed germination rate, seedling survival, and pollen germination than wild-type controls, while OsHsp18.0 overexpression provided higher thermoprotection/thermotolerance for seedling survival. To elucidate the functional roles of OsHsp16.9A, mass spectrometry was used to identify OsHsp16.9A-interacting proteins. OsHsp101 was consistently identified in the OsHsp16.9A protein complex in several mass spectrometry analyses of seed proteins from OsHsp16.9A-overexpressing lines. Both OsHsp16.9A and OsHsp101 proteins accumulated during similar developmental stages of rice seeds and formed a heat-stable complex under high temperature treatments in in vitro assays. Co-localization of OsHsp16.9A and OsHsp101 was observed via ratiometric bimolecular fluorescence complementation analyses. Amino acid mutation studies revealed that OsHsp16.9A glutamate residue 74 and amino acid residues 23-36 were essential for OsHsp16.9A-OsHsp101 interaction. Moreover, overexpressing OsHsp16.9A in OsHsp101 knockdown mutants did not increase the seed germination rate under heat stress, which further confirmed the functional roles of OsHsp16.9A-OsHsp101 interaction in conferring thermotolerance to rice plants.


Subject(s)
Heat-Shock Proteins, Small , Oryza , Thermotolerance , Thermotolerance/genetics , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Heat-Shock Proteins, Small/genetics , Heat-Shock Proteins, Small/metabolism , Amino Acids/metabolism , Gene Expression Regulation, Plant
2.
Biotechnol Bioeng ; 117(4): 933-944, 2020 04.
Article in English | MEDLINE | ID: mdl-31889302

ABSTRACT

Rice straw, a common agricultural waste, is used as a potential feedstock for bioethanol production. Currently, bioethanol is made mostly from the microbial fermentation of starch-containing raw materials. Therefore, genetically engineered starch-excess rice straw through interference of starch degradation as a potential strategy to enhance bioethanol production was evaluated in this study. Arabidopsis Starch Excess 4 (SEX4) encodes a chloroplast-localized glucan phosphatase and plays a role in transitory starch degradation. Despite the identification of a SEX4 homolog in rice, OsSEX4, its biological function remains uncertain. Ectopic expression of OsSEX4 complementary DNA complemented the leaf starch-excess phenotype of the Arabidopsis sex4-4 mutant. OsSEX4-knockdown transgenic rice plants were generated using the RNA interference approach. Starch accumulation was higher in OsSEX4-knockdown suspension-cultured cells, leaves, and rice straw compared with the wild type, suggesting that OsSEX4 plays an important role in degradation of transitory starch. The OsSEX4-knockdown rice plants showed normal plant growth and no yield penalty. Starch-excess OsSEX4-knockdown rice straw used as feedstock for fermentation resulted in improved bioethanol yield, with a 50% increase in ethanol production in a vertical mass-flow type bioreactor, compared with that of the wild-type straw.


Subject(s)
Dual-Specificity Phosphatases , Ethanol/metabolism , Oryza , Plant Proteins , Starch , Biofuels , Bioreactors , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Gene Knockdown Techniques , Genetic Engineering/methods , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Starch/genetics , Starch/metabolism
3.
Eur J Nucl Med Mol Imaging ; 46(8): 1733-1744, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31127350

ABSTRACT

PURPOSE: Imaging probes/biomarkers that are correlated with molecular or microenvironmental alterations in tumors have been used not only in diagnosing cancer but also in assessing the efficacy of cancer treatment. We evaluated the early response of hepatocellular carcinoma (HCC) to radiation treatment using T2-weighted magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, and 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET). METHODS: Orthotopic HCC tumors were established in the right liver lobe of Balb/c mice. Mice were longitudinally scanned using T2-weighted/DW MRI and 18F-FDG PET 1 day before and on days 1, 3, 6, 9 and 13 after irradiation with 15 Gy to the right liver lobe to determine tumor size, apparent diffusion coefficient (ADC) value, and maximum standardized uptake value. Immunohistochemical (IHC) staining was performed to validate the tumor microenvironment. RESULTS: Irradiation markedly retarded tumor growth in the orthotopic HCC model and led to increaes in ADC values as early as on day 1 after irradiation. Irradiation also resulted in increases in 18F-FDG uptake on day 1 that were sustained until the end of the observation period. IHC staining revealed a decrease in the number of proliferative cells and a continuous macrophage influx into irradiated tumors, which dramatically altered the tumor microenvironment. Lastly, in vitro coculture of HCC cells and macrophages led to interaction between the cells and enhanced the cellular uptake of 18F-FDG. CONCLUSION: ADC values and 18F-FDG uptake measured using DW MRI and 18F-FDG PET serve as potential biomarkers for early assessment of HCC tumor responses to radiation therapy.


Subject(s)
Carcinoma, Hepatocellular/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Liver Neoplasms/diagnostic imaging , Macrophages/radiation effects , Positron-Emission Tomography , Tumor Microenvironment/radiation effects , Animals , Carcinoma, Hepatocellular/radiotherapy , Cell Line, Tumor , Cell Proliferation/radiation effects , Dose-Response Relationship, Radiation , Fluorodeoxyglucose F18/pharmacokinetics , Humans , Liver Neoplasms/radiotherapy , Macrophages/immunology , Male , Mice , Mice, Inbred BALB C , RAW 264.7 Cells , Radiopharmaceuticals/pharmacokinetics
4.
Plant Mol Biol ; 86(1-2): 125-37, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25002225

ABSTRACT

By oligo microarray expression profiling, we identified a rice RING zinc-finger protein (RZFP), OsRZFP34, whose gene expression increased with high temperature or abscisic acid (ABA) treatment. As compared with the wild type, rice and Arabidopsis with OsRZFP34 overexpression showed increased relative stomata opening even with ABA treatment. Furthermore, loss-of-function mutation of OsRZFP34 and AtRZFP34 (At5g22920), an OsRZFP34 homolog in Arabidopsis, decreased relative stomata aperture under nonstress control conditions. Expressing OsRZFP34 in atrzfp34 reverted the mutant phenotype to normal, which indicates a conserved molecular function between OsRZFP34 and AtRZFP34. Analysis of water loss and leaf temperature under stress conditions revealed a higher evaporation rate and cooling effect in OsRZFP34-overexpressing Arabidopsis and rice than the wild type, atrzfp34 and osrzfp34. Thus, stomata opening, enhanced leaf cooling, and ABA insensitivity was conserved with OsRZFP34 expression. Transcription profiling of transgenic rice overexpressing OsRZFP34 revealed many genes involved in OsRZFP34-mediated stomatal movement. Several genes upregulated or downregulated in OsRZFP34-overexpressing plants were previously implicated in Ca(2+) sensing, K(+) regulator, and ABA response. We suggest that OsRZFP34 may modulate these genes to control stomata opening.


Subject(s)
Oryza/metabolism , Plant Proteins/physiology , Plant Stomata/physiology , Abscisic Acid/pharmacology , Amino Acid Sequence , Arabidopsis/genetics , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Heat-Shock Response/genetics , Molecular Sequence Data , Oryza/drug effects , Oryza/genetics , Oryza/ultrastructure , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Stomata/drug effects , Sequence Alignment , Temperature , Zinc Fingers
SELECTION OF CITATIONS
SEARCH DETAIL
...