Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 359: 120979, 2024 May.
Article in English | MEDLINE | ID: mdl-38692033

ABSTRACT

If pharmaceutical wastewater is not managed effectively, the presence of residual antibiotics will result in significant environmental contamination. In addition, inadequate utilization of agricultural waste represents a squandering of resources. The objective of this research was to assess the efficacy of iron-doped biochar (Fe-BC) derived from peanut shells in degrading high concentrations of Tetracycline (TC) wastewater through activated peroxymonosulfate. Fe-BC demonstrated significant efficacy, achieving a removal efficiency of 87.5% for TC within 60 min without the need to adjust the initial pH (20 mg/L TC, 2 mM PMS, 0.5 g/L catalyst). The degradation mechanism of TC in this system involved a dual action, namely Reactive Oxygen Species (ROS) and electron transfer. The primary active sites were the Fe species, which facilitated the generation of SO4•-, •OH, O2•-, and 1O2. The presence of Fe species and the C=C structure in the Fe-BC catalyst support the electron transfer. Degradation pathways were elucidated through the identification of intermediate products and calculation of the Fukui index. The Toxicity Estimator Software Tool (T.E.S.T.) suggested that the intermediates exhibited lower levels of toxicity. Furthermore, the system exhibited exceptional capabilities in real water and circulation experiments, offering significant economic advantages. This investigation provides an efficient strategy for resource recycling and the treatment of high-concentration antibiotic wastewater.


Subject(s)
Charcoal , Iron , Reactive Oxygen Species , Tetracycline , Wastewater , Tetracycline/chemistry , Charcoal/chemistry , Reactive Oxygen Species/chemistry , Wastewater/chemistry , Iron/chemistry , Water Pollutants, Chemical/chemistry , Peroxides/chemistry , Electron Transport
2.
Bioresour Technol ; 396: 130383, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38316227

ABSTRACT

The addition of biochar resulted in a 31.5 % to 44.6 % increase in decolorization efficiency and favorable decolorization stability. Biochar promoted extracellular polymeric substances (EPS) secretion, especially humic-like and fulvic-like substances. Additionally, biochar enhanced the electron transfer capacity of anaerobic sludge and facilitated surface attachment of microbial cells. 16S rRNA gene sequencing analysis indicated that biochar reduced microbial species diversity, enriching fermentative bacteria such as Trichococcus. Finally, a machine learning model was employed to establish a predictive model for biochar characteristics and decolorization efficiency. Biochar electrical conductivity, H/C ratio, and O/C ratio had the most significant impact on RR2 anaerobic decolorization efficiency. According to the results, the possible mechanism of RR2 anaerobic decolorization enhanced by different types of biochar was proposed.


Subject(s)
Azo Compounds , Charcoal , Coloring Agents , Azo Compounds/metabolism , Coloring Agents/metabolism , Anaerobiosis , RNA, Ribosomal, 16S/genetics , Sewage
3.
Environ Sci Technol ; 58(5): 2434-2445, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38265760

ABSTRACT

Source characteristics and health risks of indoor organophosphate esters (OPEs) are limited by the lack of knowledge on emission processes. This study attempted to integrate the contents and emissions of OPEs from indoor building materials to assess human health effects. Thirteen OPEs were investigated in 80 pieces of six categories of building materials. OPEs are ubiquitous in the building materials and ∑13OPE contents varied significantly (p < 0.05) from 72.8 ng/g (seam agent) to 109,900 ng/g (wallpaper). Emission characteristics of OPEs from the building materials were examined based on a microchamber method. Depending on the sample category, the observed initial area-specific emission rates of ∑13OPEs varied from 154 ng/m2/h (carpet) to 2760 ng/m2/h (wooden floorboard). Moreover, the emission rate model was developed to predict the release levels of individual OPEs, quantify source contributions, and assess associated exposure risks. Source apportionments of indoor OPEs exhibited heterogeneities in multiple environmental media. The joint OPE contribution of wallpaper and wooden floorboard to indoor dust was up to 94.8%, while latex paint and wooden floorboard were the main OPE contributors to indoor air (54.2%) and surface (76.1%), respectively. Risk assessment showed that the carcinogenic risks of tris(2-chloroethyl) phosphate (3.35 × 10-7) were close to the acceptable level (1 × 10-6) and deserved special attention.


Subject(s)
Environmental Monitoring , Flame Retardants , Humans , Esters/analysis , Flame Retardants/analysis , China , Organophosphates/analysis , Dust/analysis , Construction Materials
4.
Water Res ; 249: 120948, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38064787

ABSTRACT

Scientists have been focusing on applying more natural processes instead of industrial chemicals in drinking water treatment to achieve the purpose of carbon emissions reduction. In this study, we shortened the infiltration range of riverbank filtration, a natural water purification process, to form the short-distance riverbank filtration (sRBF) which retained its ability in water quality improvement and barely influenced the groundwater environment, and integrated it with ultrafiltration (UF) to form a one-step sRBF-UF system. This naturalness-artificiality combination could realize stable contaminants removal and trans-membrane pressure (TMP) increase relief for over 30 days without dosing chemicals. Generally, both sRBF and UF played the important role in river water purification, and the interaction between them made the one-step sRBF-UF superior in long-term operation. The sRBF could efficiently remove contaminants (90 % turbidity, 60 % total nitrogen, 30 % ammonia nitrogen, and 25 % total organic carbon) and reduce the membrane fouling potential of river water under its optimum operation conditions, i.e., a hydraulic retention time of 48 h, an operation temperature of 20 °C, and a synergistic filter material of aquifer and riverbank soil. Synergistic adsorption, interception, and microbial biodegradation were proved to be the mechanisms of contaminants and foulants removal for sRBF. The sequential UF also participated in the reduction of impurities and especially played a role in intercepting microbial metabolism products and possibly leaked microorganisms from sRBF, assuring the safety of product water. To date, the one-step sRBF-UF was a new attempt to combine a natural process with an artificial one, and realized a good and stable product quality in long-term operation without doing industrial chemicals, which made it a promised alternative for water purification for cities alongside the river.


Subject(s)
Ultrafiltration , Water Purification , Membranes, Artificial , Filtration , Carbon , Nitrogen
5.
J Hazard Mater ; 465: 133089, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38016316

ABSTRACT

Tire road wear particles (TRWPs) are a large source of microplastics in the environment, while the quantification of TRWPs is still challenging due to the complex interferences and the uncertainties and inconsistencies among different methods. This study developed a TRWPs quantification method using optimized pretreatments and bonded-sulfur as marker. Road dust samples (n = 48) were collected, pretreatments including density separation, digestion and extraction were optimized to remove interferences of the bonded-sulfur (minerals, sulfur-containing proteins, hydrosoluble/hydrophobic sulfur-containing substances). Presence of TRWPs in the samples was confirmed by microscopy and scanning electron microscopyenergy dispersive spectrometry. Bonded-sulfur in the samples were quantified by inductively coupled plasmamass spectrometry (ICPMS). Additionally, bonded-sulfur in tire wear particles (TWPs) abraded from tires of top 10 best-selling brands were measured to calculate conversion factor (1.1 ×104 µg/g) for the quantification of TRWPs in real samples. TRWPs contents were 5.40 × 104 µg/g11.02 × 104 µg/g and 2.36 × 104 µg/g5.30 × 104 µg/g in samples from heavy and light traffic roads, respectively. The method provided better recoveries (88-107%, n = 18) and repeatability (RSD=2.0-7.9%, n = 3) compared to methods using rubber, benzothiazole and organic zinc as markers. Furthermore, stability of the bonded-sulfur was validated by Raman and ICPMS. Thus, this accurate and stable quantification method could promote research on TRWPs.

6.
Molecules ; 28(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37513184

ABSTRACT

In this study, pristine kiwi peel (KP) and nitric acid modified kiwi peel (NA-KP) based adsorbents were prepared and evaluated for selective removal of cationic dye. The morphology and chemical structure of KP and NA-KP were fully characterized and compared, and results showed nitric acid modification introduced more functional groups. Moreover, the adsorption kinetics and isotherms of malachite green (MG) by KP and NA-KP were investigated and discussed. The results showed that the adsorption process of MG onto KP followed a pseudo-second-order kinetic model and the Langmuir isotherm model, while the adsorption process of MG onto NA-KP followed a pseudo-first-order kinetic model and the Freundlich isotherm model. Notably, the Langmuir maximum adsorption capacity of NA-KP was 580.61 mg g-1, which was superior to that of KP (297.15 mg g-1). Furthermore, thermodynamic studies demonstrated the feasible, spontaneous, and endothermic nature of the adsorption process of MG by NA-KP. Importantly, NA-KP showed superior selectivity to KP towards cationic dye MG against anionic dye methyl orange (MO). When the molar ratio of MG/MO was 1:1, the separation factor (αMG/MO) of NA-KP was 698.10, which was 5.93 times of KP. In addition, hydrogen bonding, π-π interactions, and electrostatic interaction played important roles during the MG adsorption process by NA-KP. This work provided a low-cost, eco-friendly, and efficient option for the selective removal of cationic dye from dyeing wastewater.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Coloring Agents/chemistry , Adsorption , Nitric Acid , Rosaniline Dyes/chemistry , Thermodynamics , Kinetics , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration
7.
Water Res ; 242: 120265, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37390652

ABSTRACT

Mineral scaling is an inconvenient obstacle for membrane distillation in hypersaline wastewater concentration applications, compromising membrane lifespan to maintain high water recovery. Although various measures are devoted to alleviating mineral scaling, the uncertainty and complexity of scale characteristics make it difficult to accurately identify and effectively prevent. Herein, we systematically elucidate a practically applicable principle to balance the trade-off between mineral scaling and membrane lifespan. Through experimental demonstration and mechanism analysis, we find a consistent concentration phenomenon of hypersaline concentration in different situations. Based on the characteristics of the binding force between the primary scale crystal and the membrane, the quasi-critical concentration condition is sought to prevent the accumulation and intrusion of mineral scale. The quasi-critical condition achieves the maximum water flux on the premise of guaranteeing the membrane tolerance, and the membrane performance can be restored by undamaged physical cleaning. This report opens up an informative horizon for circumventing the inexplicable scaling explorations and develops a universal evaluation strategy to provide technical support for membrane desalination.


Subject(s)
Water Purification , Water , Water/chemistry , Longevity , Membranes, Artificial , Minerals , Distillation
8.
J Environ Manage ; 342: 118304, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37276619

ABSTRACT

Solar farms are critical to tackling climate change and achieving carbon neutrality. Besides producing renewable energy, a solar farm modifies microclimates and changes water distribution, consequently affecting local carbon sequestration capacity (CSC). Yet, how the CSC of an ecosystem responds to these changes after solar farm construction remains inadequately understood. Herein, the SOFAR model was adopted to reveal the effects of large-scale solar farms (LSFs) on CSC in arid northern China, with a series of numeric experiments along a climate gradient (with precipitation ranging from 70 to 500 mm yr-1). The results show that relative to pristine vegetation background, CSC was non-linearly increased by averages of 3.49-6.68%, 4.43-10.25%, 5.07-9.71% and 5.6% each year after the installation of LSFs in hyper-arid climates (with aridity index or AI = 0.04-0.05), arid climates (AI = 0.14-0.16), semi-arid climates (AI = 0.21-0.3) and semi-humid climates (AI = 0.55), respectively. The increase in available water for plants growing under the drip lines of photovoltaic panels (PVs) in LSFs is confirmed to be the overwhelming factor responsible for CSC enhancement. Although biases remain in the estimation of increased CSC in hyper- and semi-humid regions due to the high variability of climate (e.g., extreme drought events) and serious radiation reduction beneath PVs, it is certain that solar farms facilitate CSC without increasing external land use. These results will deepen our understanding of the feedback between solar farms and ambient environments and be meaningful for vegetation management in solar farms, especially in the context of climate change and carbon neutrality aims.


Subject(s)
Carbon Sequestration , Ecosystem , Farms , Climate Change , Water , Carbon
9.
Environ Sci Pollut Res Int ; 30(12): 34598-34611, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36513898

ABSTRACT

Volatile organic compounds (VOCs) emitted from porous wood-based panels with fractal structure severely pollute indoor environment. Different from previous studies which the diffusion type of VOC in building materials is attributed to Fick diffusion, VOC emission from porous wood-based panels belongs to Knudsen diffusion is firstly determined by comparing the pore diameter of internal channel with VOC molecular free path in this paper. Therefore, a time fractional mass transfer model related to the fractal dimension has been proposed to analyze Knudsen diffusion characteristics firstly. This model considers areal porosity has an impact on surface emission. Analytical solution of the present model is obtained for the first time. Furthermore, it is proved that the finite difference scheme is solvable, unconditionally stable, and convergent, and numerical simulation result and experimental data match well. Moreover, the influences of the fractal dimension df, areal porosity ε, and delay time parameter λ on VOC emission are demonstrated and analyzed; results suggest that the higher ε and df, and lower λ promote VOC emission, which can provide guidance for improving indoor air quality.


Subject(s)
Air Pollution, Indoor , Volatile Organic Compounds , Wood/chemistry , Volatile Organic Compounds/analysis , Porosity , Construction Materials , Air Pollution, Indoor/analysis
10.
Materials (Basel) ; 15(16)2022 Aug 09.
Article in English | MEDLINE | ID: mdl-36013610

ABSTRACT

In this paper, super-gravity solidification and cold-rolling were utilized to obtain Al-14.5Si alloys. The influence of annealing time on microstructure and mechanical properties of Al-14.5Si alloys was investigated. Our results indicated that high elongation was achieved by super-gravity solidification due to the submicron eutectic Si, making it possible to undertake the conventional cold-rolling. The yield strength (~214 ± 11 MPa) was significantly enhanced (~68.5%) after cold-rolling mainly due to high dislocation density. The coarsening of eutectic Si could be observed during annealing, which resulted in a decrease in yield strength. The elimination of internal stress and lattice distortion during annealing led to a decrease in micro-cracks/voids beneath the fracture surface during tensile testing, which in turn enhanced the elongation.

11.
Polymers (Basel) ; 14(16)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36015658

ABSTRACT

For preparing high-performance electrospun fibers with functional molecules that cannot cross-entangle themselves, such as conductive polymers, promoting the aggregation of functional molecules on the surface by surface segregation is a promising approach. In the present study, electrospun polymethyl methacrylate/polyaniline (PMMA/PANI) fibers were prepared under various conditions, including solution composition, applied voltage, tip-to-collector distance, temperature, humidity, and gas-phase solvent concentration, to examine the effects of the parameters on fiber morphology and surface segregation. The changes in fiber morphology and variations in the intensity of PANI and PMMA's characteristic bands were investigated with scanning electron microscopy (SEM) and Raman spectroscopy. The results demonstrated that by changing the saturation difference and the viscosity, the amount of PMMA and PANI added significantly influenced whether surface segregation could occur. The effect of other investigated parameters on surface segregation was concluded to alter the molecular migratable time by affecting the jet flight time and the solvent volatilization rate. Among them, increasing the solvent concentration could significantly promote surface segregation without sacrificing morphological advantages. When the solvent concentration increased from 1.4 to 158 mg/m3, the Raman peak intensity ratio of PANI and PMMA increased from 2.91 to 5.05, while the fiber diameter remained essentially constant.

12.
Front Endocrinol (Lausanne) ; 13: 821588, 2022.
Article in English | MEDLINE | ID: mdl-35909512

ABSTRACT

Jintrolong® is a long-acting PEGylated recombinant human growth hormone (PEG-rhGH) developed for weekly injection in patients with pediatric growth hormone deficiency (PGHD). Although PEG modification of therapeutic proteins is generally considered safe, concerns persist about the potential for adverse vacuolation in tissues with long-term exposure to PEG-included therapies, particularly in children. We assessed the safety of Jintrolong® in cynomolgus monkeys with an examination of vacuolation in the brain choroid plexus (CP) and reported long-term clinical safety data obtained from children with PGHD. The toxicity of Jintrolong® was assessed following the 52-week administration with doses at 0.3, 1, or 3 mg/kg/week. The levels of vacuolation of CP in animals were dose-dependent and at least partially reversible after a 104- or 157-week recovery period. Vacuolation in the CP epithelium did not lead to obvious subcellular structural or cell functional abnormalities. Compared with the clinical dose of 0.2 mg/kg/week Jintrolong® in PGHD patients, exposure in monkeys under NOAEL 3 mg/kg/week exhibited safety margins greater than 120.5, the predicted minimum dose to induce vacuolation in monkeys is equivalent to 1.29 mg/kg/week in humans, which is 6.45-fold higher than the clinical dose. The safety data acquired in clinical trials for Jintrolong® were also analyzed, which included phase III (360 patients), phase IV (3,000 patients) of 26-week treatment, and a follow-up study with treatment lasting for 3 years. There was no statistically significant difference in the incidence of adverse reactions between the Jintrolong® group and the daily rhGH control group (no PEG), and no new adverse effects (AE) were observed in the Jintrolong® group at the clinical therapeutic dose of 0.2 mg/kg/week.


Subject(s)
Dwarfism, Pituitary , Human Growth Hormone , Animals , Child , Follow-Up Studies , Human Growth Hormone/adverse effects , Humans , Macaca fascicularis , Polyethylene Glycols/adverse effects , Polyethylene Glycols/chemistry , Recombinant Proteins/adverse effects
13.
Molecules ; 27(3)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35164389

ABSTRACT

As one of the major sources of volatile pollutants in indoor air, gaseous emissions from adhesives during interior decoration have attracted increasing concern. Identifying major volatile pollutants and the risk in adhesive gaseous emissions is of great significance, but remains rarely reported. In the present research, we assessed the major volatile pollutants emitted from white emulsion adhesive and silicone adhesive samples (n = 30) from three aspects: chemical composition, odor and health risk contributions. The results showed that a total of 21 volatile pollutants were detected. Significantly, xylene was the most concentrated compound from white emulsion adhesives, accounting for 45.51% of the total concentrations. Butanone oxime was the most concentrated compound in silicone adhesives, accounting for 69.86% of the total concentrations. The trends in odor concentration (evaluated by the odor activity value method) over time were well correlated with the total chemical concentrations. Xylene (58.00%) and butanone oxime (76.75%) showed the highest odor contribution, respectively. Moreover, from an integrated perspective of chemical emissions, odor and health risk contributions, xylene, ethylbenzene, ethyl acetate and benzene were identified as the key volatile pollutants emitted from the white emulsion adhesives, while butanone oxime, butanone, and ethanol were the key volatile pollutants emitted from the silicone adhesives. This study not only identified the key volatile pollutants but also provided characteristics of odor and health risks of gas emitted from adhesives.


Subject(s)
Adhesives/chemistry , Air Pollutants/analysis , Odorants/analysis , Volatile Organic Compounds/analysis , Butanones/analysis , Environmental Monitoring , Humans , Xylenes/analysis
14.
Bioresour Technol ; 347: 126694, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35017092

ABSTRACT

This work aimed at revealing the distribution characteristics of phosphorus (P) containing substances in an aerobic granular sludge-membrane bioreactor (AGS-MBR). During the long running period (180 days) with no sludge discharge, AGS was successfully cultivated on day 20, and the system performed well in removing organic pollutants and total nitrogen (TN). However, the removal of total P (TP) showed a fluctuant tendency, and P was found to distribute in all the phases of the system. In the intracellular phase, it occupied the largest ratio all through the period. In AGS, inorganic P (IP) was measured to be about 74.4-77.8% of TP, with non-apatite IP (NAIP) composing 57.5-69.6%, while in organic P (OP), the ratio of monoester and diester phosphate was in the range of 19-26.9% and 12-13.5%, respectively. The presence of highly releasable and bioavailable P (NAIP + OP) in AGS implied that it might be a potential P resource for utilization.


Subject(s)
Running , Sewage , Aerobiosis , Bioreactors , Nitrogen , Phosphorus , Waste Disposal, Fluid
15.
Sci Total Environ ; 813: 152644, 2022 Mar 20.
Article in English | MEDLINE | ID: mdl-34968611

ABSTRACT

The present investigation aimed at providing a novel approach to promote the rapid granulation and stability of aerobic granular sludge (AGS) in a continuous-flow membrane bioreactor (MBR). By operating two identical MBRs with or with no bio-carrier for 125 days, it was found that the combination of multi-ionic matrix and bio-carrier could promote the rapid formation and maintain the long-term stability of AGS. The primary AGS was first observed inside the reactor on day 14, and the mature AGS appeared soon and kept stable for more than 4 months (its average size still was about 800 µm on day 125). Suitable filling ratio of bio-carrier was beneficial to form a stable and regular circulating water flow inside, and adding divalent metal ions quickly reduced the negative charges of tiny sludge particles, which were two essential factors leading to the rapid granulation of AGS and maintaining its stability. The multi-ionic matrix not only enhanced the biological aggregation process, but also facilitated the expansion of the cultivated AGS into a new multi-habitat system of Mn-AGS, in which, complex microbial communities with rich bio-diversity robustly promoted the efficient removal of organic pollutants and nutrients.


Subject(s)
Sewage , Waste Disposal, Fluid , Aerobiosis , Bioreactors , Ions
16.
Bioresour Technol ; 344(Pt B): 126270, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34740796

ABSTRACT

The effect of organic bulking agents on CO2, NH3, N2O and CH4 emission and related genes was evaluated in 40 days sludge composting with wood chip, wheat straw and rice husk, respectively. The results showed wood chip had the highest C/N of 111.3, total porosity of 93.13% and aeration porosity of 78.98% among three bulking agents. Wheat straw had the highest water-holding porosity of 25.62%, which could be critical factor increasing CH4 production and reducing NH3 emission. Moreover, there was no significant difference in N2O emission rates in three composting systems with three bulking agents. RDA analysis showed a negative correlation between mcrA and NH + 4-N. Nitrate content in raw feedstock was dominant factor limiting N2O yield due to low amoA. The continuous increase of oxidation-reduction potential was significantly positive correlated with pmoA and negative correlation with nirK and norB, which reduced N2O and CH4 production in the curing period.


Subject(s)
Composting , Greenhouse Gases , Ammonia/analysis , Greenhouse Gases/analysis , Methane/analysis , Nitrous Oxide/analysis , Sewage , Soil
17.
Sci Total Environ ; 802: 149946, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34525759

ABSTRACT

Photovoltaic technology plays an important role in the sustainable development of clean energy, and arid areas are particularly ideal locations to build large-scale solar farms, all over the world. Modifications to the energy balance and water availability through the installation of large-scale solar farms, however, fundamentally affect the energy budget, water, and biogeochemical cycles. In-situ field observations, though, fail to draw definitive conclusions on how photovoltaic panels (PVs) affect the ambient environment, or how microclimates and soil moisture evolve under the long-term, continuous, cumulative influence of PVs. Here, we designed a synthetic model, integrating processes of energy budget and water cycle, to quantify the ecohydrological effects of PVs on soil microclimate and moisture regimes at different locations (zones) near individual PVs. Simulations run with a stochastically generated 100-year climate time series were examined to capture the evolutionary trends of soil microclimate and soil moisture. The results indicate that soil moisture content was increased by 59.8% to 113.6% in the Middle and Front zones, and soil temperature was decreased by 1.47 to 1.66 °C in all the sheltered zones, mainly because there was 5- 7 times more available water and ~27% less available radiation there, compared with the control zone. On the other hand, if the ground clearance of the PVs is too low, turbulence beneath hot PVs will have a significant influence on not only soil temperature but also soil moisture content. The innovative contribution of this study lies in reinforcing existing theoretical patterns for the development of soil microclimate and moisture dynamics influenced by PVs, and can be used to provide reliable insights into the hydrological and biogeochemical processes on Earth and the sustainable management of large-scale solar farms in arid ecosystems.


Subject(s)
Microclimate , Soil , China , Ecosystem , Farms , Water/analysis
18.
Chemosphere ; 283: 131021, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34182626

ABSTRACT

Volatile organic compounds (VOCs) emissions are regarded as a worth concerned threat to human health. The UV-Fenton coupled with mass transfer enhanced process shows promising effects on VOCs treatment. However, the detailed mechanism and mathematical model for this method have not been established. This work focuses on the hypothesis and validation of a mathematical model for UV-Fenton removal of VOCs using activated carbon particles to enhance mass transfer efficiency. Based on the mathematical model of reaction-diffusion-mass transfer, a mathematical model is established by using a series of important parameters such as ub, Dg, Dl, Kial, Kla and hydroxyl radical lifetime. The proposed model in this study introduces the key parameter of synergistic factor, which greatly improves the consistency between the model predicted results and the experimental data (the determination coefficient R2 distribution range changed from 0.71-0.98 to 0.95-0.98). Moreover, it can also explain reasonably the steady trend of outlet VOC concentration after 30 min of reaction. The mathematical model confirms that the addition of activated carbon during the UV-Fenton reaction ensures mass transfer efficiency and considerably improves (growth from 2% to 54%) the VOCs removal efficiency due to the synergy between UV-Fenton oxidation and mass transfer enhancement. Meanwhile, it provides insight into fruitful utilization of the oxidation capacity in the oxidation reaction,and achieves the purpose of predicting the efficiency of VOC removal in the Fenton process.


Subject(s)
Volatile Organic Compounds , Humans , Hydrogen Peroxide , Hydroxyl Radical , Models, Theoretical , Oxidation-Reduction
19.
Bioresour Technol ; 336: 125085, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34049165

ABSTRACT

The difference and interplay of microbial communities, metabolic functions and influence factors between sewage sludge and bulking agent were evaluated in 60 days composting. Results showed that fungal communities were mainly affected by pH (42.4%) and ORP (35.9%) of sludge but by VS (41.1%) and temperature (34.7%) of sawdust in a composting system. Bacterial communities were primarily affected by VS (43.5%) and C/N (34.8%) of sludge but by ORP (44.5%) and temperature (31.0%) of sawdust. Tepidimicrobium dominated in the sludge at thermophilic period, while Alcaligenes prevailed in the sawdust. Bacterial carbon metabolism was significantly higher in the sludge than that in the sawdust except carbohydrate metabolism. Saprophytic fungi were the main trophic mode both in the sludge and sawdust. Water transfer facilitated Aspergillus and Trichosporon moving from sludge to sawdust to decompose lignocellulose. Ammonia transfer promoted the migration of Alcaligenes and Pseudomonas from sludge to sawdust and facilitated ammonia assimilating.


Subject(s)
Composting , Microbiota , Mycobiome , Ammonia , Sewage , Soil
20.
RSC Adv ; 11(42): 26151-26159, 2021 Jul 27.
Article in English | MEDLINE | ID: mdl-35479464

ABSTRACT

Volatile organic compounds (VOCs) emitting from building materials are one of the main sources of indoor pollution. Environmental factors have obvious effects on VOC emissions from building materials. However, no unified conclusions have been achieved on the influence of relative humidity (RH) and air change rate (ACR), and there is little research on the correlations of RH and ACR with parameters in VOCs emission fitting models. Therefore, factor analysis was applied in this paper to study the influence of RH and ACR on VOCs emissions. Medium density fibreboard pannels with the coating of oil-based paint were applied at four ACR (0.5 h-1, 1.0 h-1, 2.0 h-1, 3.0 h-1) and four RH (20%, 30%, 50%, 70%) conditions in 60 L environmental chambers. Tenax TA tubes were used to collect VOCs and thermal desorption-gas chromatography mass spectrometry was applied to determine the concentrations. The results show that RH influences the initial stage of VOCs emission and has a positive correlation with the emission concentrations. In the later emission stage, RH has no obvious influence on VOCs emissions, while the concentrations of VOCs are inversely proportional to ACR. The parameters in the single exponential model a 1 and b 1 have power-law or polynomial relationships with ACR and RH. ACR has negative correlations with a 1 and positive correlations with b 1, resulting in a negative influence on VOCs emissions, while RH has a complex influence on VOCs emissions. This study elucidated how RH and ACR impact VOCs emissions from oil-based paint coating medium density fibreboard and further influence human health exposure risks, which can then be used to improve indoor air quality.

SELECTION OF CITATIONS
SEARCH DETAIL
...