Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Environ Res ; 95(5): e10868, 2023 May.
Article in English | MEDLINE | ID: mdl-37072151

ABSTRACT

Bioflocculants have received more and more attention as alternatives to chemical flocculants because of their innocuousness, environmental friendliness, and high effectiveness. This study aims to investigate various factors that influence the performance of the novel bioflocculant produced by Bacillus thuringiensis (BF-TWB10) and analyze its adsorption kinetics to optimize its flocculation performance for real applications. The best-fit kinetic model was pseudo-second order with R2 = 0.999. The effects of pretreatment temperature, pH, and the presence of cations on flocculation were assessed. Further investigations of flocculation, including zeta potential analysis and particle size analysis, were also conducted. Thermal pretreatment of BF-TWB10 or the presence of divalent cations could stimulate the decolorization efficiency of the bioflocculant. BF-TWB10 manifested outstanding dye removal performances with over 90% for all tested anionic dyes at pH 2 and 3. Its decolorization efficiency on anionic dyes decreased with the increase of pH values. Zeta potential analysis revealed that the electrostatic repulsion between anionic dyes decreased after the addition of BT-TWB10 and further diminished by adjusting the reaction mixture to pH 2 before flocculation, suggesting the occurrence of adsorption bridging and charge neutralization. These findings proposed that BF-TWB10 might be a promising bioflocculant for the removal of dyes in textile wastewater. PRACTITIONER POINTS: Bioflocculant BF-TWB10 shows outstanding performance in flocculation. Adsorption process follows pseudo-second-order kinetic model. Flocculation process is pH-responsive. High-temperature pretreatment or divalent cations enhance its flocculation performance. The analyses suggest the occurrence of charge neutralization and adsorption bridging.


Subject(s)
Bacillus thuringiensis , Cations, Divalent , Flocculation , Kinetics , Coloring Agents , Hydrogen-Ion Concentration
2.
Nanomaterials (Basel) ; 10(4)2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32260230

ABSTRACT

Photoluminescent nanomaterials have immense potential for use in biological systems due to their excellent fluorescent properties and small size. Traditional semiconductor quantum dots are heavy-metal-based and can be highly toxic to living organisms, besides their poor photostability and low biocompatibility. Nano-sized carbon quantum dots and their surface-modified counterparts have shown improved characteristics for imaging purposes. We used 1,3, 6-trinitropyrene (TNP) and polyethylene glycol6000 (PEG6000) in a hydrothermal method to prepare functional polyethylene glycol6000/carbon nanodots (PEG6000/CDs) and analyzed their potential in fluorescent staining of different types of bacteria. Our results demonstrated that PEG6000/CDs stained the cell pole and septa of gram-positive bacteria B. Subtilis and B. thuringiensis but not those of gram-negative bacteria. The optimal concentration of these composite nanodots was approximately 100 ppm and exposure times varied across different bacteria. The PEG6000/CD composite had better photostability and higher resistance to photobleaching than the commercially available FM4-64. They could emit two wavelengths (red and green) when exposed to two different wavelengths. Therefore, they may be applicable as bioimaging molecules. They can also be used for differentiating different types of bacteria owing to their ability to differentially stain gram-positive and gram-negative bacteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...