Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 108
Filter
1.
EClinicalMedicine ; 71: 102578, 2024 May.
Article in English | MEDLINE | ID: mdl-38606167

ABSTRACT

Background: Constipation is prevalent worldwide, significantly increasing healthcare costs and diminishing the quality of life in children affected. Current studies have yielded mixed results regarding the factors associated with constipation, and mainly focusing on patients outside of Asia. Moreover, most of these studies lack focus on the paediatric population. This study aimed to identify the prevalence and associated factors of constipation among children in Asia. Methods: In this systematic review and meta-analysis, we systematically searched PubMed, Scopus, and Cochrane for cohort and cross-sectional studies published from database inception up to October 12, 2022, and continued with manual searching until September 2, 2023. Eligible studies were those that included children in Asia aged 0-18 years old suffering from idiopathic constipation, with prevalence value provided in the English abstract. The analysis included clinical and general population. Children with organic constipation, who had undergone gastrointestinal surgery, or with congenital defects were excluded, as these factors affect the incidence of constipation. Data included in the analysis were extracted from published reports only. The extracted data were pooled using random-effects model to analyse the prevalence of constipation in children in Asia. This study is registered with PROSPERO, CRD42022367122. Findings: Out of 4410 systematically searched studies and 36 manually searched ones, a total of 50 studies were included in the final analysis, encompassing data from 311,660 children residing in Asia. The pooled prevalence of constipation was 12.0% (95% CI 9.3-14.6%, I2 = 99.8%). There was no significant difference in constipation prevalence observed by sex and geographical location. Nonetheless, adolescents and children aged 1-9 years exhibited a significantly higher prevalence constipation compared to infants (p < 0.0001) Additionally, significant differences in constipation rates were observed across various diagnostic methods, population sources, and mental health conditions. Interpretation: Despite the high heterogeneity resulting from varying diagnostic tools or definitions used among studies, our review adds to the literature on constipation among children in Asia. It reveals a notably high prevalence of constipation in this demographic. Diagnostic methods, age, and compromised mental health emerged as significant influencers of constipation among children in Asia, highlighting potential strategies to mitigate constipation prevalence in children in Asia. Funding: The National Science and Technology Council, Taiwan.

2.
Plants (Basel) ; 13(5)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38475464

ABSTRACT

Retinopathy caused by ultraviolet radiation and cancer chemotherapy has increased dramatically in humans due to rapid environmental and social changes. Therefore, it is very important to develop therapeutic strategies to effectively alleviate retinopathy. In China, people often choose dendrobium to improve their eyesight. In this study, we explored how Dendrobium fimbriatum extract (DFE) protects ARPE-19 cells and mouse retinal tissue from damage of ultraviolet (UV) radiation and chemotherapy. We evaluated the antioxidant capacity of DFE using the 1,1-diphenyl-2-trinitophenylhydrazine (DPPH) assay. The protective effects of DEF from UV- and oxaliplatin (OXA)-induced damage were examined in ARPE-19 cells using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and immunofluorescence (IF) stains, and in mouse retinal tissue using immunohistochemistry (IHC) stains. Our results show that DFE has excellent antioxidant capacity. The ARPE-19 cell viability was decreased and the F-actin cytoskeleton structure was damaged by UV radiation and OXA chemotherapy, but both were alleviated after the DFE treatment. Furthermore, DFE treatment can alleviate OXA chemotherapy-induced reduced expressions of rhodopsin and SOD2 and increased expressions of TNF-α and caspase 3 in mouse retinal tissue. Thus, we suggest that DFE can act as suitable treatment for retinopathy through reducing oxidative stress, inflammation, and apoptosis.

3.
Plants (Basel) ; 12(21)2023 Nov 05.
Article in English | MEDLINE | ID: mdl-37960130

ABSTRACT

In diabetes mellitus, Ficus formosana has been reported to ameliorate blood sugar levels and inhibit inflammation through its polyphenol and flavonoid contents. However, its effect on diabetic peripheral neuropathy (DPN) remains unknown. This study aimed to investigate the effect of Ficus formosana extract (FFE) on DPN in ovariectomized diabetic mice. Ovariectomized female C57BL/6J mice fed a high-fat diet plus streptozotocin injections to induce type 2 diabetes were orally administered FEE at 20 or 200 mg/kg BW daily, for 6 weeks. To evaluate the pain responses in the paws of the mice, a von Frey filament test and a thermal hyperalgesia test were performed. Additionally, the intraepidermal and sciatic nerve sections were examined, along with an assessment of inflammation- and pain response-related mRNA expression in the paws of the mice. The results showed that the oral administration of both 20 and 200 mg/kg BW FEE significantly alleviated the hypersensitivity of the paw and the abnormal proliferation and rupture of the C fiber, and reduced the mRNA expression of interleukin-1ß, interleukin-6, interferon-γ, cyclooxygenase-2, and voltage-gated sodium channel 1.8 in the sciatic nerve of ovariectomized diabetic mice. We propose that FFE ameliorates peripheral neuropathy by suppressing oxidative damage in ovariectomized diabetic mice.

4.
Int J Mol Sci ; 24(18)2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37762074

ABSTRACT

The number of elderly dogs is increasing significantly worldwide, and many elderly dogs develop canine cognitive dysfunction syndrome (CCDS). CCDS is the canine analog of Alzheimer's disease (AD) in humans. It is very important to develop techniques for detecting CDDS in dogs. Thus, we used the detection of neurofilament light chains (NfL) in plasma as a blood-based biomarker for the early diagnosis of canine Alzheimer's disease using immunomagnetic reduction (IMR) technology by immobilizing NfL antibodies on magnetic nanoparticles. According to the 50-point CCDS rating scale, we divided 36 dogs into 15 with CCDS and 21 without the disease. The results of our IMR assay showed that the plasma NfL levels of dogs with CCDS were significantly increased compared to normal dogs (p < 0.01). By plasma biochemical analysis, we further confirmed that the liver and renal dysfunction biomarkers of dogs with CCDS were significantly elevated compared to normal dogs (p < 0.01-0.05). On the basis of our preliminary study, we propose that IMR technology could be an ideal biosensor for detecting plasma NfL for the early diagnosis of CCDS.

5.
Nutrients ; 15(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37764856

ABSTRACT

A high-fat diet (HFD) is a major risk factor for cardiovascular diseases. Many pure compounds have been demonstrated to be effective in treating cardiovascular diseases. In this study, we investigated the alleviating effects of oral ovatodiolide and antcin K (OAK) supplements on HFD-induced cardiovascular dysfunction in apolipoprotein E (ApoE)-knockout mice. Cardiovascular dysfunction was induced in ApoE-knockout mice by feeding them an HFD for 12 weeks. The degree of cardiovascular dysfunction was assessed through echocardiography, hematological and biochemical analyses, and immunofluorescence and immunohistochemical staining. The HFD-fed mice exhibited cardiovascular dysfunction-abnormal blood biochemical index. The arterial wall tissue exhibited the marked deposition of lipids, upregulated expression of vascular cell adhesion molecule-1 and CD36 receptors, and downregulated expression of the ABCA1 receptor. Macrophages isolated from the peritoneal cavity of the mice exhibited increased levels of lipid accumulation, reactive oxygen species, and CD11b expression but reduced mitochondrial membrane potential. The expression of superoxide dismutase 2 was downregulated and that of tumor necrosis factor-α was upregulated in the myocardial tissue. Oral OAK supplements twice a day for 12 weeks significantly mitigated HFD-induced cardiovascular dysfunction in the experimental mice. Oral OAK supplements appear to be a promising strategy for treating HFD-induced cardiovascular dysfunction. The underlying mechanisms may involve the reduction of lipid accumulation in the artery and oxidative stress and inflammation in the cardiovascular tissue.


Subject(s)
Cardiovascular Diseases , Diet, High-Fat , Animals , Mice , Diet, High-Fat/adverse effects , Oxidative Stress , Apolipoproteins E/genetics
6.
Chemosphere ; 339: 139701, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37543232

ABSTRACT

Nanoparticles (NPs) fabrication is a significant approach to enhance the visible light response of photocatalysts, to realize inexpensive and more harmful compound removal, at larger scale. The poor electrons and holes separation capability and low light activity of bulk materials can be notably enhanced through developing NPs. From photocatalytic investigation, better performance was received in the tungsten diselenide (WSe2) NPs than that in bare WSe2, exhibiting the action of restrained recombination of charge carriers in the NPs. The photocatalytic Cr(VI) reduction efficiency of WSe2 NPs is 2.7 folds greater than that by bare WSe2. On the other hand, the photocatalytic efficiency follows the order of nano WSe2-3 > nano WSe2-2 > nano WSe2-1 > bare WSe2, nano WSe2-3 is nearly 2.7 folds greater than that of bare WSe2. The results imply the fabrication of WSe2 NPs and it possesses improved visible light utilization. The proposed WSe2 NPs have merged with the three aspects of photocatalytic capability including the visible light activity, the valid separation of photo-response charge carriers and enough surface active sites owing to the nanoscale formed. This research endows conduct on the potential style of NPs for photo-response water environmental remediation.


Subject(s)
Ciprofloxacin , Nanoparticles , Tungsten , Light , Water , Catalysis
7.
Plants (Basel) ; 12(13)2023 Jun 29.
Article in English | MEDLINE | ID: mdl-37447055

ABSTRACT

Breast cancer is the most common cancer in women, and chemotherapy is an effective treatment. However, chemotherapy often causes adverse side effects such as cardiotoxicity, myelosuppression, immunodeficiency, and osteoporosis. Our study focused on the alleviating effects of Anoectochilus roxburghii extracts (AREs) on the adverse side effects of chemotherapy in mice with breast cancer. We individually evaluated the antioxidant capacity and cytotoxicity of the AREs using DPPH and MTT assays. We also examined the effects of the AREs on intracellular F-actin, reactive oxygen species (ROS), and the mitochondrial membrane potential (MMP) of 4T1 cancer cells before and after doxorubicin (DOX) treatment. Our results showed that ARE treatment enhanced the effects of DOX chemotherapy by promoting cell morphology damage, oxidative stress, and ROS generation, as well as by reducing MMP in the 4T1 breast cancer cells. By using BALB/c mice with breast cancer with DOX treatment, our results showed that the DOX treatment reduced body weight, blood pressure, and heart rate and induced myelosuppression, immunodeficiency, cardiotoxicity, and osteoporosis. After oral ARE treatment of BALB/c mice with breast cancer, the chemotherapeutic effects of DOX were enhanced, and the adverse side effects of DOX chemotherapy were alleviated. Based on the above results, we suggest that AREs can be used as an adjuvant reliever to DOX chemotherapy in BALB/c mice with breast cancer.

8.
Life (Basel) ; 13(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37374200

ABSTRACT

The neonicotinoid imidacloprid is a widely used insecticide worldwide. We assessed the effects of acute and chronic imidacloprid exposure on the social behavior of adult zebrafish. We assembled simple apparatus to detect 2D locomotion: a single camera capture system and two specially designed water tanks. We then used the tracking and heat maps of the behavior trajectories of zebrafish subjected to sham and imidacloprid exposure and compared their social behavior. Furthermore, histomorphology and immunohistochemistry of their brain tissue sections were performed to clarify possible neurotoxicity due to imidacloprid exposure in our adult zebrafish. Our results showed that imidacloprid exposure significantly reduced the zebrafish's swimming speed, distance traveled, acceleration, and deceleration. The longer the imidacloprid exposure, the more severe the locomotor behavior disability. Furthermore, imidacloprid exposure significantly reduced heterosexual attractive behavior between the different sexes, as well as defensive alert behavior among males. Our histomorphology and immunohistochemistry evidence showed imidacloprid exposure may lead to neuronal oxidative stress, inflammation, apoptosis, and damage in the telencephalon of adult zebrafish. Thus, we suggested that neonicotinoid imidacloprid exposure can damage the telencephalon neurons of adult zebrafish through oxidative stress, inflammation, and apoptosis and then affect the social behavior of adult zebrafish.

9.
Plants (Basel) ; 11(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36365265

ABSTRACT

Lipid metabolism disorder is the most critical risk factor for atherosclerosis, and the process involves lipid deposition in the arterial intima. In Taiwan, antcin K, an active triterpenoid from the fruiting bodies of Antrodia camphorata, has been considered a potential lipid-lowering agent. Despite this, the possible therapeutic mechanisms of antcin K remain unclear. To explore the crucial role of botanical antcin K in reducing atherosclerotic plaque, we used SVEC4-10 vascular endothelial cells and RAW264.7 macrophages with palm acid oil-induced high-fat damage as our cell models. Our results showed through using the DPPH assay that antcin K had excellent free radical scavenging ability. Antcin K treatment can significantly alleviate the high-fat damage and reduce the levels of inflammatory factors of TNF-α and IL-1ß in vascular endothelial cells and macrophages, as shown through MTT assay and ELISA. Furthermore, antcin K treatment can effectively enhance migration ability and clear lipid deposition in macrophages, as shown by using cell migration assay and oil red O staining. When stained with immunofluorescence, antcin K was shown to significantly decrease the expression of adhesion molecules of vascular cell adhesion molecule 1 (VCAM-1) in vascular endothelial cells involved in monocyte migration and inflammation. Antcin K not only reduced the expression of the CD36 scavenger receptor but also augmented the expression of Kruppel-like factor 4 (KLF4) transcription factor in macrophages, which inhibits the transformation of macrophages into foam cells underlying the pathological process of atherosclerosis. Taking our findings into account, we suggested that botanical antcin K could have therapeutic potential for the treatment of atherosclerosis.

10.
Biosensors (Basel) ; 12(10)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36291020

ABSTRACT

Alzheimer's disease (AD) is the most common form of dementia. The most convincing biomarkers in the blood for AD are currently ß-amyloid (Aß) and Tau protein because amyloid plaques and neurofibrillary tangles are pathological hallmarks in the brains of patients with AD. The development of assay technologies in diagnosing early-stage AD is very important. The study of human AD subjects is hindered by ethical and technical limitations. Thus, many studies have therefore turned to AD animal models, such as Drosophila melanogaster, to explore AD pathology. However, AD biomarkers such as Aß and p-Tau protein in Drosophilamelanogaster occur at extremely low levels and are difficult to detect precisely. In this study, we applied the immunomagnetic reduction (IMR) technology of nanoparticles for the detection of p-Tau expressions in hTauR406W flies, an AD Drosophila model. Furthermore, we used IMR technology as a biosensor in the therapeutic evaluation of Chinese herbal medicines in hTauR406W flies with Tau-induced toxicity. To uncover the pathogenic pathway and identify therapeutic interventions of Chinese herbal medicines in Tau-induced toxicity, we modeled tauopathy in the notum of hTauR406W flies. Our IMR data showed that the selected Chinese herbal medicines can significantly reduce p-Tau expressions in hTauR406W flies. Using evidence of notal bristle quantification and Western blotting analysis, we confirmed the validity of the IMR data. Thus, we suggest that IMR can serve as a new tool for measuring tauopathy and therapeutic evaluation of Chinese herbal medicine in an AD Drosophila model.


Subject(s)
Alzheimer Disease , Biosensing Techniques , Drugs, Chinese Herbal , Tauopathies , Animals , Humans , tau Proteins , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Drosophila/metabolism , Drugs, Chinese Herbal/therapeutic use , Drosophila melanogaster/metabolism , Tauopathies/drug therapy , Amyloid beta-Peptides , Technology
11.
Plants (Basel) ; 11(4)2022 Feb 21.
Article in English | MEDLINE | ID: mdl-35214904

ABSTRACT

Alzheimer's disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to the abnormal accumulation of amyloid ß (Aß) proteins. Yi-Gan-San (YGS), a traditional herbal medicine, has been used for the management of neurodegenerative disorders and for the treatment of neurosis, insomnia and dementia. The aim of this study was to examine antioxidant capacity and cytotoxicity of YGS treatment by using 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays in vitro. We explored neuroprotective effects of YGS treatment in alleviating Aß neurotoxicity of Drosophila melanogaster in vivo by comparing survival rate, climbing index, and Aß expressions through retinal green fluorescent protein (GFP) expression, highly sensitive immunomagnetic reduction (IMR) and Western blotting assays. In the in vitro study, our results showed that scavenging activities of free radical and SH-SY5Y nerve cell viability were increased significantly (p < 0.01-0.05). In the in vivo study, Aß42-expressing flies (Aß42-GFP flies) and their WT flies (mCD8-GFP flies) were used as an animal model to examine the neurotherapeutic effects of YGS treatment. Our results showed that, in comparison with those Aß42 flies under sham treatments, Aß42 flies under YGS treatments showed a greater survival rate, better climbing speed, and lower Aß42 aggregation in Drosophila brain tissue (p < 0.01). Our findings suggest that YGS should have a beneficial alternative therapy for AD and dementia via alleviating Aß neurotoxicity in the brain tissue.

12.
J Hazard Mater ; 422: 126922, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34425433

ABSTRACT

Phthalate esters (PAEs) are a group of ubiquitous organic environmental contaminants. Engineered ferromanganese-bearing sludge-derived biochar (SDB), synthesized using one-step pyrolysis in the temperature range between 300 and 900 °C, was used to enable Fenton-like processes that decontaminated PAE-laden sediments. SDB was thoroughly characterized using scanning electron microscopyenergy-dispersive spectroscopy, transmission electron microscopy, Brunauer-Emmett-Teller surface area, thermogravimetric analysis, Raman spectroscopy, Fourier-transform infrared spectroscopy, electron paramagnetic resonance, X-ray photoelectron spectroscopy, and fluorescence excitation-emission matrix spectroscopy coupled with parallel factor analysis. The maximum PAE degradation was remarkable at 90% in 12 h at pH 6.0 in the presence of 1.7 g L-1 of SDB 900. The highly-effective PAE degradation was mainly attributed to the synergism between FeOx and MnOx, which strengthened the activation of percarbonate (PC) via electron transfer, hydroxy addition, and hydrogen abstraction through radical (HO•) and nonradical (1O2) oxidation mechanisms, thereby facilitating PAE catalytic degradation over SDB in real sediments, which clearly proved the efficacy of ferromanganese-bearing SDB and PC for the remediation of contaminated sediments. The cytotoxicity exhibited by human skin keratinocyte cells exposure to high SDB concentration (100-400 µg mL-1) for 24-48 h was low indicating insignificant cellular toxicity and oxidative damages. This study provides a new strategy for freshwater sludge treatment and reutilization, which enables a water-cycle-based circular economy and waste-to-resource recycling.


Subject(s)
Esters , Sewage , Carbonates , Charcoal , Humans , Iron , Manganese , Phthalic Acids
13.
Article in English | MEDLINE | ID: mdl-34659428

ABSTRACT

A hepatoprotective medicine, Yang-Gan-Wan (YGW), was used to treat hepatic damage in cell and mouse models. We performed a 1,1-diphenyl-2- picrylhydrazyl (DPPH) assay and found that YGW exhibited a significantly high free radical scavenging ability. Furthermore, the results of the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay revealed that YGW treatment could alleviate lipopolysaccharide (LPS)-induced damage in Kupffer cells (liver macrophages). Enzyme-linked immunosorbent assay results demonstrated that YGW treatment could alleviate LPS-induced inflammation in Kupffer cells by inhibiting the expression of tumor necrosis factor (TNF)-α and interleukin (IL)-1ß. By quantifying the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), we found that YGW treatment could alleviate hepatic damage and improve immunity in acetaminophen- (APAP-) treated mice by inhibiting the expression of ALT and AST. The findings of hematoxylin and eosin and Masson's trichrome staining indicated that YGW treatment could alleviate hepatic damage and reduce collagen fiber formation in the liver tissue of APAP-treated mice. Furthermore, immunohistochemistry staining and Western blot results showed that YGW treatment could alleviate oxidative stress, inflammation, and apoptosis in the liver tissue of APAP-treated mice by enhancing superoxide dismutase 2 (SOD2) expression but inhibiting TNF-α and caspase 3 expression. Our results suggest that YGW treatment exerted hepatoprotective effects on LPS-treated Kupffer cells and APAP-treated mice by inhibiting oxidation, inflammation, and apoptosis.

14.
Article in English | MEDLINE | ID: mdl-34539798

ABSTRACT

Weanling piglets often develop respiratory diseases such as pneumonia because they encounter substantial environmental stress. This study investigated an alternative herbal feed additive, Guizhi Li-Zhong Tang (GLZ), for preventing pneumonia in weanling piglets. An in vitro experiment demonstrated that GLZ has high antioxidant capacity and low cytotoxicity toward Kupffer cells. In addition, GLZ treatment can alleviate lipopolysaccharide (LPS)-induced damage in Kupffer cells. A total of 94 4-week-old piglets were randomly divided into three groups, which received sham treatment, 0.2% Tilmicosin antibiotic (TAB) treatment, or 0.2% GLZ treatment. Piglets receiving the GLZ treatment had a higher survival rate and higher immunoglobulin G levels but lower allergy-related eosinophil levels and cough incidence than did piglets receiving the sham or 0.2% TAB treatments. Through immunohistochemistry and Western blot analysis, we discovered that piglets receiving the 0.2% GLZ treatment had significantly higher expression of antioxidant-related SOD2 and lower expression of oxidative-stress-related 3-NT (p < 0.01), inflammation-related TNF-α (p < 0.01) and NF-κB (p < 0.05), and apoptosis-related caspase-3 (p < 0.01) in lung tissue than did piglets receiving the sham or 0.2% TAB treatment. Therefore, GLZ treatment is promising as an alternative to antibiotic medicine for weanling piglets because of its protective antioxidative, anti-inflammatory, and antiapoptotic effects in lung tissue.

15.
Membranes (Basel) ; 11(8)2021 Aug 06.
Article in English | MEDLINE | ID: mdl-34436360

ABSTRACT

In order to overcome the challenges of low permeate flux (Jp) and the accompanying reverse solute flux (JS) during the forward osmosis (FO) membrane separation process, we synthesized four hybrid materials of polyacid-based organic compounds and incorporated them into the selective polyamide (PA) layer to make novel thin-film nanocomposite (TFN) FO membranes. The Jp and JS of each membrane were evaluated and used along with membrane selectivity (Jp/JS) as indicators of membrane separation performance. The fabricated and modified membranes were also characterized for ridge and valley surface morphologies with increasing hydrophilicity and finger-shaped parallel channels in the PSf substrate. Moreover, two highly hydrophilic nanoparticles of graphene oxide (GO) and titanium oxide (TiO2) were introduced with the hybrid materials for PA modification, which can further enhance the Jp of the TFN membranes. The highest Jp of the TFN membranes achieved 12.1 L/m2-h using 0.1% curcumin-acetoguanamine @ cerium polyacid (CATCP) and 0.0175% GO. The characteristic peaks of the hybrid materials were detected on the membrane surface using attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, evidencing successful incorporation of the hybrid materials during membrane modification. Here, we present the novel TFN membranes using hybrid materials for separation applications. The reactions for synthesizing the hybrid materials and for incorporating them with PA layer are proposed.

16.
Pestic Biochem Physiol ; 177: 104896, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34301358

ABSTRACT

Fipronil is a phenylpyrazole insecticide that may selectively inhibit gamma-aminobutyric acid receptors in insects. Although fipronil is the most widely used insecticide in aquatic environments, few studies have evaluated its neurotoxicity for the sensory and motor systems of aquatic vertebrates. We assessed the effects of acute fipronil exposure on the survival rate, number of hair cells of lateral lines, and neurotoxicity for zebrafish (Danio rerio). In addition, heat maps and the speed and distance of the swimming trajectory were compared between zebrafish subjected to the sham and fipronil treatments. Western blotting and immunohistochemistry were conducted separately to compare expressions of oxidative stress, inflammation, apoptosis, and neurotoxicity related proteins in the brain tissue between adult zebrafish with sham and fipronil treatments. Our results indicated that the survival rates and the speed and distance of the swimming trajectory significantly decreased for adult zebrafish exposed to fipronil. The results also suggested that the number of hair cells of lateral lines significantly reduced for zebrafish embryos exposed to fipronil. In histopathology and Western blotting tests, substantial oxidative stress, inflammation, and apoptosis were observed in the brain tissue of adult zebrafish exposed to fipronil. Our results revealed that fipronil toxicity may impair sensory and motor systems in zebrafish because of damage to lateral hair cells and brain tissue through oxidative stress, inflammation, and apoptosis, which in turn result in a significantly reduced survival rate and impaired locomotion. The behavioral responses of zebrafish exposed to fipronil toxicity should be determined for better understanding the reliability of behavioral biomarkers in the risk assessment of environmental toxicology.


Subject(s)
Water Pollutants, Chemical , Zebrafish , Animals , Pyrazoles/toxicity , Reproducibility of Results
17.
Chemosphere ; 281: 130796, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34289641

ABSTRACT

This paper describes the fabrication, modification, and evaluation of the performance of thin-film composite (TFC) forward osmosis (FO) membranes for lab-scale aquaculture wastewater recovery using various fumed silica (SiO2) nanoparticles. The active polyamide (PA) layers of these membranes were novelly modified using different types of pretreated SiO2 nanoparticles [virgin SiO2, dried SiO2, and 3-aminopropyltriethoxysilane (APTES)-modified SiO2] and concentrations (0.05, 0,1, 0,2, and 0.4 wt%) to improve the membrane hydrophilicity with minimum particle agglomeration. Results show that the APTES-SiO2 modified membrane had the highest water flux and selectivity, followed by the dried-SiO2 modified membrane. The APTES coupling agent notably reduced the SiO2 aggregation on the membrane surface and improved membrane hydrophilicity. Consequently, high permeate flux and an acceptable reverse solute flux were observed. The optimal SiO2 concentration for PA modification was 0.1 wt% for all the nanoparticle types. The virgin and APTES-SiO2 modified membranes were used for aquaculture wastewater recovery. The water recovery rate reached 47% in 84 h when using the APTES-SiO2 modified membrane, while it reached only 26% in 108 h when using the virgin membrane. With a suitable design of the filtration apparatus and choice of draw solution (DS), the prepared novel TFC-FO membrane containing APTES-modified SiO2 can be used for recycling aquaculture wastewater into the DS, which can then be reused for other purposes.


Subject(s)
Nanoparticles , Water Purification , Aquaculture , Membranes, Artificial , Osmosis , Silicon Dioxide , Wastewater
18.
Chin J Physiol ; 64(2): 61-71, 2021.
Article in English | MEDLINE | ID: mdl-33938816

ABSTRACT

Clinically typical dementia Alzheimer's disease (AD) is associated with abnormal auditory processing. However, possible molecular mechanisms responsible for the auditory pathology of AD patients are not known. According to our past research findings that the thresholds of auditory brainstem response, but not distortion product otoacoustic emissions, were significantly increased in AD mice from 9 months of age and thereafter. Thus, we further explored the possible mechanism of auditory degradation of 3×Tg-AD mice in this study. Our histochemical staining evidence showed the cochlear spiral ganglion neurons (SGN), but not the cochlear hair cells, were lost significantly in the cochlea of 3×Tg-AD mice from 9 months of age and thereafter. Our immunostaining and western blotting evidence showed that phosphorylated tau protein (p-Tau), p-glycogen synthase kinase 3, neurofilament, and apoptosis-related p53, Bcl2-associated X protein, cytochrome c, caspase-9, and caspase-3 were gradually increased, but B-cell lymphoma 2 was gradually decreased with age growth in the cochlea of 3×Tg-AD mice. We suggested that tau hyperphosphorylation and p-Tau 181 aggregation, and mitochondria- and endoplasmic reticulum stress-mediated apoptosis may play a role in the degeneration of SGN in the cochlea. Progressive SGN degeneration in the cochlea may contribute to hearing loss of aging 3×Tg-AD mice.


Subject(s)
Alzheimer Disease , Hearing Loss , Animals , Apoptosis , Disease Models, Animal , Humans , Mice , Mice, Transgenic , Phosphorylation , Spiral Ganglion
19.
Appl Opt ; 60(12): 3365-3373, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33983241

ABSTRACT

The study focuses on a methodology providing noninvasive monitoring and evaluation of the antitumor effect of traditional Chinese medicine, cantharides complex (canth), on 4T1 breast tumor cells. Digital holographic tomography (DHT) and developed data post-processing algorithms were used for quantitative estimation of changes in optical and morphological parameters of cells. We calculated and compared data on the refractive index, thickness, and projected area of 4T1 breast tumor cells in control untreated specimens and those treated with doxorubicin hydrochloride (DOX), canth, and their combinations. Post-treatment changes in cellular morphology recorded by DHT demonstrated that the two drugs led to noticeably different morphological changes in cells that can be presumably associated with different pathways of their death, apoptosis, or necrosis. The effect of combined treatment with these two drugs strongly depended on their relative concentrations and could lead to changes characteristic either for DOX or for canth; however, being more profound than those obtained when using each drug solely. The results obtained by DHT are in a good correspondence with commonly used cell viability analysis and immunofluorescent analysis of changes in cellular cytoskeleton.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Cantharidin/pharmacology , Holography/methods , Tomography/methods , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Doxorubicin/pharmacology , Female , Fluorescent Antibody Technique , Medicine, Chinese Traditional , Mice , Refractometry/methods
20.
Article in English | MEDLINE | ID: mdl-33884024

ABSTRACT

Doxorubicin (DOX), a chemotherapeutic drug, often causes many adverse side effects in patients with cancer, such as weight loss, motor disability, blood circulation defects, myelosuppression, myocardial injury, joint degeneration, and bone loss. The Chinese herbal medicine Guilu Erxian Glue (GEG) has been used in the prevention and treatment of osteoarthritis and osteoporosis for hundreds of years, with considerably fewer side effects. We expected that GEG could serve as a protective and beneficial alternative treatment for DOX-induced adverse side effects. In this study, we evaluated whether GEG can alleviate DOX-induced weight loss, motor disability, abnormal blood circulation, myelosuppression, myocardial injury, joint degeneration, and bone loss by using chemotherapy models of synoviocyte cell line HIG-82 and mice. Moreover, we examined the antioxidant capacity of GEG by using DPPH (1,1-diphenyl-2-picrylhydrazyl) free-radical scavenging. Our results revealed that GEG treatment can significantly enhance DPPH free-radical scavenging and reduce DOX-induced cytotoxicity in synoviocyte HIG-82 cells. In addition, GEG treatment for 2 weeks can significantly relieve weight loss, enhance exhaustive exercise capacity, improve blood circulation, alleviate myocardial oxidative stress and inflammation, and strengthen the tibias of DOX-treated mice. Thus, we suggest that GEG treatment can be a protective and alternative therapy for alleviating chemotherapy-related side effects such as weight loss, motor disability, blood circulation defects, and bone loss.

SELECTION OF CITATIONS
SEARCH DETAIL
...