Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39016025

ABSTRACT

The exploitation of hierarchical carbon nanocages with superior light-to-heat conversion efficiency, together with their distinct structural, morphological, and electronic properties, in photothermal applications could provide effective solutions to long-standing challenges in diverse areas. Here, we demonstrate the discovery of pristine and nitrogen-doped hierarchical carbon nanocages as superior supports for highly loaded, small-sized Ru particles toward enhanced photothermal CO2 catalysis. A record CO production rate of 3.1 mol·gRu-1·h-1 with above 90% selectivity in flow reactors was reached for hierarchical nitrogen-doped carbon-nanocage-supported Ru clusters under 2.4 W·cm-2 illumination without external heating. Detailed studies reveal that the enhanced performance originates from the strong broadband sunlight absorption and efficient light-to-heat conversion of nanocage supports as well as the excellent intrinsic catalytic reactivity of sub-2 nm Ru particles. Our study reveals the great potential of hierarchical carbon nanocages in photothermal catalysis to reduce the fossil fuel consumption of various industrial chemical processes and stimulates interest in their exploitation for other demanding photothermal applications.

2.
Adv Mater ; 36(9): e2308859, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37931240

ABSTRACT

Improving the solar-to-thermal energy conversion efficiency of photothermal nanomaterials at no expense of other physicochemical properties, e.g., the catalytic reactivity of metal nanoparticles, is highly desired for diverse applications but remains a big challenge. Herein, a synergistic strategy is developed for enhanced photothermal conversion by a greenhouse-like plasmonic superstructure of 4 nm cobalt nanoparticles while maintaining their intrinsic catalytic reactivity. The silica shell plays a key role in retaining the plasmonic superstructures for efficient use of the full solar spectrum, and reducing the heat loss of cobalt nanoparticles via the nano-greenhouse effect. The optimized plasmonic superstructure catalyst exhibits supra-photothermal CO2 methanation performance with a record-high rate of 2.3 mol gCo -1 h-1 , close to 100% CH4 selectivity, and desirable catalytic stability. This work reveals the great potential of nanoscale greenhouse effect in enhancing photothermal conversions through the combination with conventional promoting strategies, shedding light on the design of efficient photothermal nanomaterials for demanding applications.

3.
Microbiol Spectr ; 11(1): e0364922, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36511663

ABSTRACT

The rhizosphere of invasive plants presumably develops different soil microbial assemblages compared with native plants, which may hinder or promote their invasion. However, to date, no studies have clearly explored rhizosphere microbial community assemblages during invasion. The invasive species Ambrosia artemisiifolia L. and Bidens pilosa L. are widely distributed in China and are known to reduce local biodiversity and cause agricultural losses. Monoculture of A. artemisiifolia or B. pilosa, a mixture of each invasive and native species, and monoculture of native species were established to simulate different degrees of invasion. Metagenomic sequencing techniques were used to test microbial community structure and function. The aim was to explore the drivers of the assembly of peculiar functional microbes in the rhizosphere soil of invasive species during the long-term invasive-native species interaction. Compared with the native species, the relative abundance of 34 microbial genera was higher in the rhizosphere soil of the invasive species. The NO3-N concentration in the rhizosphere soil from the A. artemisiifolia and B. pilosa monocultures was lower than that from monocultures of the three native plants, whereas pH followed the opposite trend. The NO3-N concentration was significantly and negatively correlated with Sporichthya, Afipia, Actinokineospora, and Pseudolabrys. pH was positively correlated with Bradyrhizobium, Actinoplanes, Micromonospora, Steroidobacter, Burkholderia, and Labilithrix. The differences in soil microbes, NO3-N concentrations, and pH between native and invasive species suggest that the rhizosphere soil microbial assemblages may vary. The reduced NO3-N concentration and increased pH corelated with changes in rhizosphere microbial community during A. artemisiifolia and B. pilosa invasion. IMPORTANCE Soil microbial communities play a vital role in the growth of invasive plants. Invasive species may shape peculiar functional microbes in the rhizosphere soil of an invasive species to benefit its growth. However, the drivers of the assembly of soil microbial communities in the rhizosphere soil of invasive species remain unclear. Our study established the relationship between soil microbial communities and soil chemical properties during invasion by A. artemisiifolia and B. pilosa. Additionally, it showed that the presence of the invasive plants correlated with changes in NO3-N and pH, as well as in rhizosphere microbial community assemblage. Furthermore, the study provided important insights into the difference in the microbial community assembly between native and invasive plant species.


Subject(s)
Bidens , Microbiota , Nitrates , Ambrosia , Rhizosphere , Nitrogen , Introduced Species , Soil/chemistry , Plants , Hydrogen-Ion Concentration , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...