Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 29(2): 265-278, 2024 03.
Article in English | MEDLINE | ID: mdl-38189962

ABSTRACT

Transition metal complexes with characteristics of unique packaging in nanoparticles and remarkable cancer cell cytotoxicity have emerged as potential alternatives to platinum-based antitumor drugs. Here we report the synthesis, characterization, and antitumor activities of three new Ruthenium complexes that introduce 5-fluorouracil-derived ligands. Notably, encapsulation of one such metal complex, Ru3, within pluronic® F-127 micelles (Ru3-M) significantly enhanced Ru3 cytotoxicity toward A549 cells by a factor of four. To determine the mechanisms underlying Ru3-M cytotoxicity, additional in vitro experiments were conducted that revealed A549 cell treatment with lysosome-targeting Ru3-M triggered oxidative stress, induced mitochondrial membrane potential depolarization, and drastically reduced intracellular ATP levels. Taken together, these results demonstrated that Ru3-M killed cells mainly via a non-apoptotic pathway known as oncosis, as evidenced by observed Ru3-M-induced cellular morphological changes including cytosolic flushing, cell swelling, and cytoplasmic vacuolation. In turn, these changes together caused cytoskeletal collapse and activation of porimin and calpain1 proteins with known oncotic functions that distinguished this oncotic process from other cell death processes. In summary, Ru3-M is a potential anticancer agent that kills A549 cells via a novel mechanism involving Ru(II) complex triggering of cell death via oncosis.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Lysosomes , Poloxamer , Ruthenium , Humans , Poloxamer/chemistry , Poloxamer/pharmacology , Lysosomes/drug effects , Lysosomes/metabolism , A549 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Ruthenium/chemistry , Ruthenium/pharmacology , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Membrane Potential, Mitochondrial/drug effects , Drug Screening Assays, Antitumor , Oxidative Stress/drug effects
2.
Metallomics ; 14(5)2022 05 20.
Article in English | MEDLINE | ID: mdl-35150263

ABSTRACT

The growing evidence over the past few decades has indicated that the photodynamic antitumor activity of transition metal complexes, and Re(I) compounds are potential candidates for photodynamic therapy. This study reports the synthesis, characterization, and anti-tumor activity of three new Re(I)-guadinium complexes. Cytotoxicity tests reveal that complex Re1 increased cytotoxicity by 145-fold from IC50 > 180 µM in the dark to 1.3 ± 0.7 µM following 10 min of light irradiation (425 nm) in HeLa cells. Further, the mechanism by which Re1 induces apoptosis in the presence or absence of light irradiation was investigated, and results indicate that cell death was caused through different pathways. Upon irradiation, Re1 first accumulates on the cell membrane and interacts with death receptors to activate the extrinsic death receptor-mediated signaling pathway, and then is transported into the cell cytoplasm. Most of the intracellular Re1 locates within mitochondria, improving the reactive oxygen species level, and decreasing mitochondrial membrane potential and ATP levels, and inducing the activation of caspase-9 and, thus, apoptosis. Subsequently, the residual Re1 can translocate into the cell nucleus, and activates the p53 pathway, causing cell cycle arrest and eventually cell death.


Subject(s)
Photosensitizing Agents , Rhenium , Apoptosis , Cell Cycle Checkpoints , Cell Line, Tumor , Guanidine/pharmacology , HeLa Cells , Humans , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/metabolism , Receptors, Death Domain/metabolism , Rhenium/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...