Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Toxicol Methods ; 55(2): 135-43, 2007.
Article in English | MEDLINE | ID: mdl-16793290

ABSTRACT

INTRODUCTION: Challenge of guinea-pig tracheal epithelium with hyperosmolar solution alters ion transport and evokes the release of epithelium-derived relaxing factor (EpDRF). Cultured tracheal epithelial cells (CE) offer the potential to examine biochemical pathways related to EpDRF release, but whether the bioelectric properties and responses of fresh, adherent epithelial cells (FE) are modeled by CE has not been established. METHODS: Tracheal epithelial cells grown in air-interface culture and fresh tracheal segments were mounted in Ussing chambers to determine short circuit current (I(sc)) and transepithelial resistance (R(t)) and to compare responses to transport inhibitors, methacholine and hyperosmolarity. RESULTS: Significant differences in basal I(sc) and R(t) between FE and CE were observed (I(sc), 41.3+/-3.5 and 8.5+/-0.8 microA/cm(2), P<0.05; R(t), 106+/-7 and 422+/-4 Omega cm(2), P<0.05; respectively); basal spontaneous potential difference values were not different (4.2+/-0.3 and 3.4+/-0.3 mV, respectively). Amiloride (mucosal, 3 x 10(-5) M), bumetanide (basolateral, 10(-5) M) and ouabain (basolateral, 10(-5) M) reduced I(sc) equally in FE and CE. In contrast, NPPB (10(-5) M) in the presence of amiloride had a differential effect, decreasing I(sc) by 11% in FE and 71% in CE (P<0.05). Iberiotoxin (basolateral, 10(-7) M) was without effect in either preparation. In FE, serosal methacholine (3x10(-5) M) elicited an NPPB-insensitive monotonic increase in I(sc), but in CE caused a large, transient, NPPB-inhibitable increase which was followed by an NPPB-resistant plateau. Addition of apical D-mannitol (0.3-267 mosM) to increase osmolarity decreased I(sc) in FE, whereas in CE d-mannitol initially increased (0.3-84.3 mosM) and then decreased (84.3-267 mosM) I(sc). DISCUSSION: Cell culture causes substantial changes in the bioelectric and pharmacological properties of respiratory epithelium. Caution should be exercised when using CE as a substitute for FE in studies of ion transport- and cell volume-dependent processes.


Subject(s)
Bronchoconstrictor Agents/pharmacology , Methacholine Chloride/pharmacology , Trachea/drug effects , Amiloride/pharmacology , Animals , Bumetanide/pharmacology , Cells, Cultured , Diffusion Chambers, Culture , Dose-Response Relationship, Drug , Electric Impedance , Electrophysiology/methods , Epithelium/drug effects , Epithelium/metabolism , Epithelium/ultrastructure , Guinea Pigs , Ion Transport/drug effects , Ion Transport/physiology , Male , Mannitol/pharmacology , Osmolar Concentration , Ouabain/pharmacology , Peptides/pharmacology , Specific Pathogen-Free Organisms , Trachea/metabolism , Trachea/ultrastructure
2.
J Pharmacol Exp Ther ; 308(1): 19-29, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14566000

ABSTRACT

Osmotic challenge of airways alters the bioelectric properties of the airway epithelium and induces the release of factors that modulate smooth muscle tone. Recent studies in our laboratory suggested that methacholine-contracted airways relax in response to incremental increases in osmolarity, rather than from cell shrinkage or absolute solute concentration. In the present study, guinea pig tracheae were mounted in Ussing chambers to elucidate the bioelectric effects of challenge of the epithelium with hyperosmolar and isosmolar solutions. Transepithelial short-circuit current (Isc) across tracheae stimulated with basolateral methacholine was inhibited by apical amiloride, apical 5-nitro-2-(3-phenylpropylamino)benzoic acid, basolateral bumetanide, basolateral ouabain, and Cl(-)-free solution, but not by basolateral iberiotoxin. Apical hyperosmolar challenge with NaCl variably decreased or increased Isc, but D-mannitol (D-M) always inhibited Isc; bumetanide attenuated decreases in Isc. The effects of the transport blockers depended upon whether Isc was initially decreased or increased. Unique concentration-dependent changes in Isc and transepithelial resistance (Rt) were observed when ionic (NaCl and KCl), nonionic impermeant (D-M and sucrose), and nonionic permeant (urea) osmolytes were added to the apical and basolateral baths. At concentrations that doubled the osmolarity of the apical bath, D-M, urea, and N-methyl-D-glucamine-gluconate (NMDG-Glu) decreased Isc. Apical isosmolar NMDG-Glu solution decreased Isc, and additional NMDG-Glu caused a further decrease in Isc. Inclusion of one permeant ion, either Na+,K+, or Cl-, reversed the response to apical isosmolar and hyperosmolar solutions. Thus, bioelectric responses of the airway epithelium to hyperosmolar solution are induced by incremental increases in osmolarity.


Subject(s)
Amiloride/pharmacology , Mannitol/pharmacology , Osmolar Concentration , Sodium Channel Blockers/pharmacology , Trachea/drug effects , Animals , Dose-Response Relationship, Drug , Electrophysiology , Guinea Pigs , Male , Mannitol/chemistry , Trachea/physiology
3.
J Pharmacol Exp Ther ; 308(1): 30-6, 2004 Jan.
Article in English | MEDLINE | ID: mdl-14566001

ABSTRACT

Hyperosmolar challenge of airway epithelium stimulates the release of epithelium-derived relaxing factor (EpDRF), but the identity of EpDRF is not known. We examined the effects of pharmacological agents on relaxant responses of methacholine (3 x 10(-7) M)-contracted guinea pig perfused trachea to mucosal hyperosmolar challenge using D-mannitol. Responses were inhibited by gossypol (5 x 10(-6) M), an agent with diverse actions, by the carbon monoxide (CO) scavenger hemoglobin (10(-6) M), and by the heme oxygenase (HO) inhibitor zinc (II) protoporphyrin IX (10(-4) M). The HO inhibitor chromium (III) mesoporphyrin IX (10(-4) M) was not inhibitory, and the HO activator heme-L-lysinate (3 x 10(-4) M) did not evoke relaxant responses. The CO donor tricarbonyldichlororuthenium (II) dimer (2.2 x 10(-4) M) elicited small relaxation responses. Other agents without an effect on responses included: apyrase, adenosine, 6-anilino-5,8-quinolinequinone (LY83583), proadifen, (E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid (MK 571), diphenhydramine, glibenclamide, HgCl2, tetrodotoxin, nystatin, alpha-hemolysin, 8-bromoguanosine 3',5'-cyclic monophosphothioate, Rp-isomer, 12-O-tetradecanoylphorbol-13-acetate, cholera toxin, pertussis toxin, thapsigargin, nifedipine, Ca(2+)-free mucosal solution, hydrocortisone, and epidermal growth factor. Cytoskeleton inhibitors, includingerythro-9-(2-hydroxyl-3-nonyl)adenine, colchicine, nocodazole, latrunculin B, and cytochalasins B and D, had no effect on relaxation responses. The results suggest provisionally that a portion of EpDRF activity may be due to CO and that the release of EpDRF does not involve cytoskeletal reorganization.


Subject(s)
Endothelium-Dependent Relaxing Factors/isolation & purification , Osmolar Concentration , Trachea/drug effects , Animals , Endothelium-Dependent Relaxing Factors/metabolism , Guinea Pigs , Male , Muscle Relaxation , Perfusion , Trachea/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...