Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Orthop Surg Res ; 19(1): 111, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38308324

ABSTRACT

The 5'-HOXD genes are important for chondrogenesis in vertebrates, but their roles in osteoarthritis (OA) are still ambiguous. In our study, 5'-HOXD genes involvement contributing to cartilage degradation and OA was investigated. In bioinformatics analysis of 5'-HOXD genes, we obtained the GSE169077 data set related to OA in the GEO and analyzed DEGs using the GEO2R tool attached to the GEO. Then, we screened the mRNA levels of 5'-HOXD genes by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). We discovered that OA chondrocyte proliferation was inhibited, and apoptosis was increased. Moreover, it was discovered that SOX9 and COL2A1 were downregulated at mRNA and protein levels, while matrix metalloproteinases (MMPs) and a disintegrin-like and metalloproteinase with thrombospondin motifs (ADAMTSs) were upregulated. According to the results of differentially expressed genes (DEGs) and qRT-PCR, we evaluated the protein level of HOXD11 and found that the expression of HOXD11 was downregulated, reversed to MMPs and ADAMTSs but consistent with the cartilage-specific factors, SOX9 and COL2A1. In the lentivirus transfection experiments, HOXD11 overexpression reversed the effects in OA chondrocytes. In human OA articular cartilage, aberrant subchondral bone was formed in hematoxylin-eosin (H&E) and Safranin O and fast green (SOFG) staining results. Furthermore, according to immunohistochemistry findings, SOX9 and HOXD11 expression was inhibited. The results of this study established that HOXD11 was downregulated in OA cartilage and that overexpression of HOXD11 could prevent cartilage degradation in OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Humans , Cartilage, Articular/metabolism , Chondrocytes/metabolism , Matrix Metalloproteinases/metabolism , Osteoarthritis/genetics , Osteoarthritis/metabolism , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Biotechnol Biofuels ; 11: 307, 2018.
Article in English | MEDLINE | ID: mdl-30455736

ABSTRACT

BACKGROUND: The biological production of 2,3-butanediol from xylose-rich raw materials from Klebsiella pneumoniae is a low-cost process. RpoD, an encoding gene of the sigma factor, is the key element in global transcription machinery engineering and has been successfully used to improve the fermentation with Escherichia coli. However, whether it can regulate the tolerance in K. pneumoniae remains unclear. RESULTS: In this study, the kpC mutant strain was constructed by altering the expression quantity and genotype of the rpoD gene, and this exhibited high xylose tolerance and 2,3-butanediol production. The xylose tolerance of kpC strain was increased from 75 to 125 g/L, and the yield of 2,3-butanediol increased by 228.5% compared with the parent strain kpG, reaching 38.6 g/L at 62 h. The RNA sequencing results showed an upregulated expression level of 500 genes and downregulated expression level of 174 genes in the kpC mutant strain. The pathway analysis further showed that the differentially expressed genes were mainly related to signal transduction, membrane transport, carbohydrate metabolism, and energy metabolism. The nine most-promising genes were selected based on transcriptome sequencing, and were evaluated for their effects on xylose tolerance. The overexpression of the tktA encoding transketolase, pntA encoding NAD(P) transhydrogenase subunit alpha, and nuoF encoding NADH dehydrogenase subunit F conferred increased xylose consumption and increased 2,3-butanediol production to K. pneumoniae. CONCLUSIONS: These results suggest that the xylose tolerance and 2,3-butanediol production of K. pneumoniae can be greatly improved by the directed evolution of rpoD. By applying transcriptomic analysis, the upregulation of tktA, pntA, and nuoF that were coded are essential for the xylose consumption and 2,3-butanediol production. This study will provide reference for further research on improving the fermentation abilities by means of other organisms.

SELECTION OF CITATIONS
SEARCH DETAIL
...