Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Comput Neurosci ; 18: 1365238, 2024.
Article in English | MEDLINE | ID: mdl-38841427

ABSTRACT

Introduction: MRI is one of the commonly used diagnostic methods in clinical practice, especially in brain diseases. There are many sequences in MRI, but T1CE images can only be obtained by using contrast agents. Many patients (such as cancer patients) must undergo alignment of multiple MRI sequences for diagnosis, especially the contrast-enhanced magnetic resonance sequence. However, some patients such as pregnant women, children, etc. find it difficult to use contrast agents to obtain enhanced sequences, and contrast agents have many adverse reactions, which can pose a significant risk. With the continuous development of deep learning, the emergence of generative adversarial networks makes it possible to extract features from one type of image to generate another type of image. Methods: We propose a generative adversarial network model with multimodal inputs and end-to-end decoding based on the pix2pix model. For the pix2pix model, we used four evaluation metrics: NMSE, RMSE, SSIM, and PNSR to assess the effectiveness of our generated model. Results: Through statistical analysis, we compared our proposed new model with pix2pix and found significant differences between the two. Our model outperformed pix2pix, with higher SSIM and PNSR, lower NMSE and RMSE. We also found that the input of T1W images and T2W images had better effects than other combinations, providing new ideas for subsequent work on generating magnetic resonance enhancement sequence images. By using our model, it is possible to generate magnetic resonance enhanced sequence images based on magnetic resonance non-enhanced sequence images. Discussion: This has significant implications as it can greatly reduce the use of contrast agents to protect populations such as pregnant women and children who are contraindicated for contrast agents. Additionally, contrast agents are relatively expensive, and this generation method may bring about substantial economic benefits.

2.
PLoS One ; 18(8): e0290288, 2023.
Article in English | MEDLINE | ID: mdl-37590299

ABSTRACT

Due to the serious global harm caused by the outbreak of various viral infectious diseases, how to improve indoor air quality and contain the spread of infectious bioaerosols has become a popular research subject. Negative pressure isolation ward is a key place to prevent the spread of aerosol particles. However, there is still limited knowledge available regarding airflow patterns and bioaerosol diffusion behavior in the ward, which is not conducive to reducing the risk of cross-infection between health care workers (HCWs) and patients. In addition, ventilation layout and patient posture have important effects on aerosol distribution. In this study, the spatial and temporal characteristics as well as dispersion patterns of bioaerosols under different ventilation patterns in the ward were investigated using the computational fluid dynamics (CFD) technique. It is concluded that changes in the location of droplet release source due to different body positions of the patient have a significant effect on the bioaerosol distribution. After optimizing the layout arrangements of exhaust air, the aerosol concentration in the ward with the patient in both supine and sitting positions is significantly reduced with particle removal efficiencies exceeding 95%, that is, the ventilation performance is improved. Meanwhile, the proportion of aerosol deposition on all surfaces of the ward is decreased, especially the deposition on both the patient's body and the bed is less than 1%, implying that the risk of HCWs being infected through direct contact is reduced.


Subject(s)
Cross Infection , Patient Isolation , Humans , Posture , Sitting Position , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...