Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.749
Filter
1.
Phys Rev Lett ; 132(20): 206401, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829092

ABSTRACT

Coexisting orders are key features of strongly correlated materials and underlie many intriguing phenomena from unconventional superconductivity to topological orders. Here, we report the coexistence of two interacting charge-density-wave (CDW) orders in EuTe_{4}, a layered crystal that has drawn considerable attention owing to its anomalous thermal hysteresis and a semiconducting CDW state despite the absence of perfect Fermi surface nesting. By accessing unoccupied conduction bands with time- and angle-resolved photoemission measurements, we find that monolayers and bilayers of Te in the unit cell host different CDWs that are associated with distinct energy gaps. The two gaps display dichotomous evolutions following photoexcitation, where the larger bilayer CDW gap exhibits less renormalization and faster recovery. Surprisingly, the CDW in the Te monolayer displays an additional momentum-dependent gap renormalization that cannot be captured by density-functional theory calculations. This phenomenon is attributed to interlayer interactions between the two CDW orders, which account for the semiconducting nature of the equilibrium state. Our findings not only offer microscopic insights into the correlated ground state of EuTe_{4} but also provide a general nonequilibrium approach to understand coexisting, layer-dependent orders in a complex system.

2.
Nano Lett ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38832663

ABSTRACT

Controllable droplet manipulation has diverse applications; however, limited methods exist for externally manipulating droplets in confined spaces. Herein, we propose a portable triboelectric electrostatic tweezer (TET) by integrating electrostatic forces with a superhydrophobic surface that can even manipulate droplets in an enclosed space. Electrostatic induction causes the droplet to be subjected to an electrostatic force in an electrostatic field so that the droplet can be moved freely with the TET on a superhydrophobic platform. Characterized by its high precision, flexibility, and robust binding strength, TET can manipulate droplets under various conditions and achieve a wide range of representative fluid applications such as droplet microreactors, precise self-cleaning, cargo transportation, the targeted delivery of chemicals, liquid sorting, soft droplet robotics, and cell labeling. Specifically, TET demonstrated the ability to manipulate internal droplets from the outside of a closed system, such as performing cell labeling experiments within a sealed Petri dish without opening the culture system.

3.
Sci Rep ; 14(1): 10069, 2024 05 02.
Article in English | MEDLINE | ID: mdl-38697990

ABSTRACT

Helicobacter pylori infection, a worldwide health issue, is typically treated with standard antibiotic therapies. However, these treatments often face resistance and non-compliance due to side effects. In this umbrella review, we aimed to comprehensively assess the impact of probiotics supplementation in different preparations on Helicobacter pylori standard treatment. We searched PubMed, Embase and Cochrane Central Register of Controlled Trials in the Cochrane Library from inception to June 1, 2023, to identify systematic reviews with meta-analyses that focused on eradication rates, total side effects and other outcomes of interest. The most comprehensive meta-analysis was selected for data extraction. AMSTAR 2 was used to assess quality of meta-analyses. Overall, 28 unique meta-analyses based on 534 RCTs were included. The results suggests that probiotics supplementation with pooled probiotic strains was significantly associated with improved eradication rates (RR 1.10, 95% CI 1.06-1.14) and reduced risk of total side effects (RR 0.54, 95% CI 0.42-0.70) compared with standard therapy alone. Single-strained or multi-strained preparation of probiotics supplementation showed similar results. Despite Bifidobacterium spp. showing the highest potential for eradication, the study quality was critically low for most meta-analyses, necessitating further high-quality research to explore the optimal probiotic strains or their combinations for Helicobacter pylori treatment.aq_start?>Kindly check and confirm the edit made in article title.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Probiotics , Systematic Reviews as Topic , Probiotics/therapeutic use , Helicobacter pylori/drug effects , Helicobacter Infections/drug therapy , Helicobacter Infections/therapy , Helicobacter Infections/microbiology , Humans , Meta-Analysis as Topic , Dietary Supplements , Anti-Bacterial Agents/therapeutic use , Treatment Outcome
4.
J Hazard Mater ; 473: 134554, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38759407

ABSTRACT

The widely existed plastic additives plasticizers in organic wastes possibly pose negative influences on anaerobic digestion (AD) performance, the direct evidence about the effects of plasticizers on AD performance is still lacking. This study evaluated the influencing mechanism of two typical plasticizers bisphenol A (BPA) and dioctyl phthalate on the whole AD process. Results indicated that plasticizers addition inhibited methane production, and the inhibiting effects were reinforced with the increase of concentration. By contrast, 50 mg/L BPA exhibited the strongest inhibition on methane production. Physicochemical analysis showed plasticizers inhibited the metabolism efficiency of soluble polysaccharide and volatile fatty acids. Microbial communities analyses suggested that plasticizers inhibited the direct interspecies electron transfer participators of methanogenic archaea (especially Methanosarcina) and syntrophic bacteria. Furthermore, plasticizers inhibited the methane metabolisms, key coenzymes (CoB, CoM, CoF420 and methanofuran) biosynthesis and the metabolisms of major organic matters. This study shed light on the effects of plasticizers on AD performance and provided new insights for assessing the influences of plasticizers or plastic additives on the disposal of organic wastes.

5.
J Hazard Mater ; 473: 134636, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38772111

ABSTRACT

Nanoscale zero-valent iron (ZVI) and the oxides have been documented as an effective approach for mitigating the dissemination of antibiotic resistance genes (ARGs) during anaerobic digestion (AD). However, the mechanism of ARGs dissemination mitigated by nanoscale ZVI and iron oxides remain unclear. Here, we investigated the influencing mechanisms of nanoscale ZVI and iron oxides on ARGs dissemination during AD. qPCR results indicated that nanoscale ZVI and iron oxides significantly declined the total ARGs abundances, and the strongest inhibiting effect was observed by 10 g/L nanoscale ZVI. Mantel test showed ARGs distribution was positively correlated with physiochemical properties, integrons and microbial community, among which microbial community primarily contributed to ARGs dissemination (39.74%). Furthermore, redundancy and null model analyses suggested the dominant and potential ARGs host was Fastidiosipila, and homogeneous selection in the determinism factors was the largest factor for driving Fastidiosipila variation, confirming the inhibition of Fastidiosipila was primary reason for mitigating ARGs dissemination by nanoscale ZVI and iron oxides. These results were related to the inhibition of ARGs transfer related functions. This work provides novel evidence for mitigating ARGs dissemination through regulating microbial succession and regulation induced by ZVI and iron oxides.

6.
Int J Surg ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775618

ABSTRACT

BACKGROUND: Learning curves have been used in the field of RG. However, it should be noted that the previous study did not comprehensively investigate all changes related to the learning curve.This study aims to establish a learning curve for radical robotic gastrectomy (RG) and evaluate its effect on the short-term outcomes of patients with gastric cancer. METHODS: The clinicopathological data of 527 patients who underwent RG between August 2016 and June 2021 were retrospectively analyzed. Learning curves related to the operation time and postoperative hospital stay were determined separately using cumulative sum (CUSUM) analysis. Then, the impact of the learning curve on surgical efficacy was analyzed. RESULTS: Combining the CUSUM curve break points and technical optimization time points, the entire cohort was divided into three phases (patients 1-100, 101-250, and 251-527). The postoperative complication rate and postoperative recovery time tended to decrease significantly with phase advancement (P<0.05). More extraperigastric examined lymph nodes (LN) were retrieved in phase III than in phase I (I vs. III, 15.12±6.90 vs. 17.40±7.05, P=0.005). The rate of LN noncompliance decreased with phase advancement. Textbook outcome (TO) analysis showed that the learning phase was an independent factor in TO attainment (P<0.05). CONCLUSION: With learning phase advancement, the short-term outcomes were significantly improved. It is possible that our optimization of surgical procedures could have contributed to this improvement. The findings of this study facilitate the safe dissemination of RG in the minimally invasive era.

7.
Environ Res ; 253: 119056, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704005

ABSTRACT

Ship ballast water promoting the long-range migration of antibiotic resistance genes (ARGs) has raised a great concern. This study attempted to reveal ARGs profile in ballast water and decipher their hosts and potential risk using metagenomic approaches. In total, 710 subtypes across 26 ARG types were identified among the ballast water samples from 13 ships of 11 countries and regions, and multidrug resistance genes were the most dominant ARGs. The composition of ARGs were obviously different across samples, and only 5% of the ARG subtypes were shared by all samples. Procrustes analysis showed the bacterial community contributed more than the mobile genetic elements (MGEs) in shaping the antibiotic resistome. Further, 79 metagenome-assembled genomes (46 genera belong to four phyla) were identified as ARG hosts, with predominantly affiliated with the Proteobacteria. Notably, potential human pathogens (Alcaligenes, Mycolicibacterium, Rhodococcus and Pseudomonas) were also recognized as the ARG hosts. Above 30% of the ARGs hosts contained the MGEs simultaneously, supporting a pronounced horizontal gene transfer capability. A total of 43 subtypes (six percent of overall ARGs) of ARGs were assessed with high-risk, of which 23 subtypes belonged to risk Rank I (including rsmA, ugd, etc.) and 20 subtypes to the risk Rank II (including aac(6)-I, sul1, etc.). In addition, antibiotic resistance risk index indicated the risk of ARGs in ballast water from choke points of maritime trade routes was significantly higher than that from other regions. Overall, this study offers insights for risk evaluation and management of antibiotic resistance in ballast water.

8.
Biomed Chromatogr ; : e5895, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806448

ABSTRACT

The present research demonstrated that an integrated multi-system based on the assays of lipid-lowering and expectorant effects was used to screen quality markers of an edible and medical material-the blossom of Citrus aurantium L. var. amara Engl. (BCAVA)-and a portion of active constituents were quantified in multiple batches to provide scientific data to establish a quality standard for BCAVA. Mouse models were developed to evaluate the lipid-lowering and expectorant effects, facilitating the investigation of medicinal parts through different polar extractions of BCAVA. Subsequently, ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry was utilized for the in vivo and in vitro identification of chemical profiles within the medicinal parts of BCAVA. This methodological approach led to the selection and quantification of several active compounds from 21 batches of BCAVA sourced from different geographical regions samples. Notably, the ethanol extract of BCAVA exhibited significant lipid-lowering and expectorant effects while 183 compounds were identified in vitro and 109 in vivo, respectively. Then, five key ingredients were quantified, and the quantitative data were subjected to statistical analysis to discriminate between samples from various geographical regions. Overall, the findings underscore the significance of an integrated, assay-based approach for the characterization and quality assessment of BCAVA.

9.
Sci Total Environ ; 938: 173353, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38795999

ABSTRACT

Inevitably, aerobic biological treatment processes generate emissions of ammonia (NH3) and greenhouse gas (GHGs) emissions, especially nitrous oxide (N2O). The rapid bio-drying process (RBD) for food waste (FW) alleviates issues arising from its substantial growth. However, its emissions of NH3 and N2O remain unknown, and the correlation with nitrogen components in the substrate remains unclear, significantly impeding its widespread adoption. Here, the nitrogen loss and its mechanisms in RBD were investigated, and the results are as follows: The total emission of NH3 and N2O were1.42 and 1.16 mg/kg FW (fresh weight), respectively, achieving a 98 % reduction compared to prior studies. Structural equation modeling demonstrates that acid ammonium nitrogen (AN) decomposition chiefly generates NH3 in compost (p < 0.001). Strong correlation (p < 0.001) exists between amino acid nitrogen (AAN) and AN. In-depth analysis of microbial succession during the process reveals that the enrichment of Brevibacterium, Corynebacterium, Dietzia, Fastidiosipila, Lactobacillus, Mycobacterium, Peptoniphilus, and Truepera, are conducive to reducing the accumulation of AN and AAN in the substrate, minimizing NH3 emissions (p < 0.05). While Pseudomonas, Denitrobacterium, Nitrospira, and Bacillus are identified as key species contributing to N2O emissions during the process. Correlation analysis between physicochemical conditions and microbial succession in the system indicates that the moisture content and NO3- levels during the composting process provide suitable conditions for the growth of bacteria that contribute to NH3 and N2O emissions reduction, these enrichment in RBD process minimizing NH3 and N2O emissions. This study can offer crucial theoretical and data support for the resource utilization process of perishable organic solid waste, mitigating NH3 and GHGs emissions.

10.
Cell Signal ; 120: 111236, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38810860

ABSTRACT

Hydrogen sulfide (H2S) is one of the three most crucial gaseous messengers in the body. The discovery of H2S donors, coupled with its endogenous synthesis capability, has sparked hope for the treatment of hematologic malignancies. In the last decade, the investigation into the impact of H2S has expanded, particularly within the fields of cardiovascular function, inflammation, infection, and neuromodulation. Hematologic malignancies refer to a diverse group of cancers originating from abnormal proliferation and differentiation of blood-forming cells, including leukemia, lymphoma, and myeloma. In this review, we delve deeply into the complex interrelation between H2S and hematologic malignancies. In addition, we comprehensively elucidate the intricate molecular mechanisms by which both H2S and its donors intricately modulate the progression of tumor growth. Furthermore, we systematically examine their impact on pivotal aspects, encompassing the proliferation, invasion, and migration capacities of hematologic malignancies. Therefore, this review may contribute novel insights to our understanding of the prospective therapeutic significance of H2S and its donors within the realm of hematologic malignancies.

11.
World J Gastroenterol ; 30(19): 2505-2511, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38817656

ABSTRACT

Chronic enteropathy associated with the SLCO2A1 gene (CEAS) is a complex gastroenterological condition characterized by multiple ulcers in the small intestine with chronic bleeding and protein loss. This review explores the potential mechanisms underlying the pathogenesis of CEAS, focusing on the role of SLCO2A1-encoded prostaglandin transporter OATP2A1 and its impact on prostaglandin E2 (PGE2) levels. Studies have suggested that elevated PGE2 levels contribute to mucosal damage, inflammation, and disruption of the intestinal barrier. The effects of PGE2 on macrophage activation and Maxi-Cl channel functionality, as well as its interaction with nonsteroidal anti-inflammatory drugs play crucial roles in the progression of CEAS. Understanding the balance between its protective and pro-inflammatory effects and the complex interactions within the gastrointestinal tract can shed light on potential therapeutic targets for CEAS and guide the development of novel, targeted therapies.


Subject(s)
Dinoprostone , Intestinal Mucosa , Organic Anion Transporters , Humans , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/metabolism , Chronic Disease , Dinoprostone/metabolism , Intestine, Small/pathology , Intestine, Small/metabolism , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Intestinal Diseases/genetics , Intestinal Diseases/pathology , Animals , Gastrointestinal Hemorrhage/genetics , Gastrointestinal Hemorrhage/etiology , Ulcer/genetics , Ulcer/pathology
13.
Sci Total Environ ; 934: 173287, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38776786

ABSTRACT

Microbial metabolism is closely related to soil carbon dioxide emissions, which in turn is related to environmental issues such as global warming. Dissolved organic matter (DOM) affects many fundamental biogeochemical processes such as microbial metabolism involved in soil carbon cycle, not only directly by its availability, but also indirectly by its chemodiversity. However, the association between the DOM chemodiversity and bioavailability remains unclear. To address this knowledge gap, soils from two agro-ecological experimental sites subjected to various long-term fertilizations in subtropical area was collected. The chemodiversity of DOM was detected by multi-spectroscopic techniques including ultraviolet-visible spectrophotometry, Fourier transform infrared spectroscopy and excitation emission matrices fluorescence spectroscopy. Results showed that long-term manure amendments significantly decreased microbial metabolic quotient (qCO2) by up to 57%. We also observed that long-term manure amendments significantly increased recalcitrant components of DOM (indicated by the aromaticity, humification index, the ratio of aromatic carbon to aliphatic carbon, and the relative abundances of humic-like components) and decreased labile components of DOM. Negatively correlation between the qCO2 and the proportion of recalcitrant components of DOM supported that accumulation in recalcitrant components of DOM increased microbial carbon utilization efficiency. Random forest models also showed the highest contribution of the relative abundances of humic-like components and the aromaticity of DOM in affecting qCO2. Both of the redundancy analysis and structural equation modeling further indicated the decisive role of soil pH in influencing the DOM chemodiversity. Soil pH explained 56.7% of the variation in the chemodiversity of DOM. The accumulation of recalcitrant components in DOM with increasing soil pH might be attributed to the accelerated microbial consumption of bioavailability components and/or to the negative impact on the solubility of bioavailability components. Overall, this research highlights the significance of long-term manure amendments in regulating qCO2 by altering the chemodiversity of soil DOM.


Subject(s)
Manure , Soil Microbiology , Soil , Soil/chemistry , Fertilizers , Humic Substances , Agriculture/methods , Carbon Cycle , Environmental Monitoring
14.
Therap Adv Gastroenterol ; 17: 17562848241255295, 2024.
Article in English | MEDLINE | ID: mdl-38812707

ABSTRACT

Background: Gastrointestinal (GI) angiodysplasias is a potential cause of life-threatening bleeding. Thalidomide may have a certain effect on the treatment. Objectives: We aim to evaluate the efficacy and safety of thalidomide and used trial sequential analysis (TSA) to assess the need for further randomized controlled trials (RCTs). Design: Meta-analysis of RCTs. Data sources and methods: We systematically searched Cochrane Central Register of Controlled Trials (CENTRAL), Medical Literature Analysis and Retrieval System Online (MEDLINE), Embase, WanFang, and China National Knowledge Infrastructure databases for RCTs evaluating thalidomide in GI angiodysplasias without language restrictions. We used a random-effects model to obtain pool data and followed Grading of Recommendations Assessment, Development and Evaluation framework. TSA was employed to control the risk of random errors and to evaluate the validity of our conclusions. Results: Three RCTs were included involving 279 patients with the proportion of small intestinal angiodysplasias of 87.1%. Thalidomide led to improved mean change of hemoglobin level [mean difference (MD): 3.06, 95% confidence interval: 2.66-3.46] without severe adverse effects occurring. Other secondary endpoints, including effective response rate, cessation of bleeding after treatment, hospitalization rate because of bleeding, change in duration of hospital stays for bleeding, transfused red cell requirements, and overall adverse effects, also showed significantly better outcomes in the thalidomide group compared to the control group. TSA for all outcomes exceeded required information sizes, and cumulative Z curve all traverse trial sequential monitoring boundary. Conclusion: Almost all of the evidence was of moderate quality, suggesting that thalidomide holds promise for treating GI angiodysplasias, with favorable safety profiles. TSA suggests that conducting large-scale real-world research is recommended over relying solely on RCTs conducted within the same population and trial design. Trial registration: This meta-analysis protocol was registered on PROSPERO (CRD42023480621).

15.
Foods ; 13(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38790731

ABSTRACT

Food-borne bioactive peptides have shown promise in preventing and mitigating alcohol-induced liver injury. This study was the first to assess the novel properties of Mactra chinenesis peptides (MCPs) in mitigating acute alcoholic liver injury in mice, and further elucidated the underlying mechanisms associated with this effect. The results showed that MCPs can improve lipid metabolism by modulating the AMPK signaling pathway, decreasing fatty acid synthase activity, and increasing carnitine palmitoyltransferase 1a activity. Meanwhile, MCPs ameliorate inflammation by inhibiting the NF-κB activation, leading to reduced levels of pro-inflammatory cytokines (tumor necrosis factor-α and interleukin-1ß). Additionally, a 16S rDNA sequencing analysis revealed that MCPs can restore the balance of gut microbiota and increase the relative abundance of beneficial bacteria. These findings suggest that supplementation of MCPs could attenuate alcohol intake-induced acute liver injury, and, thus, may be utilized as a functional dietary supplement for the successful treatment and prevention of acute liver injury.

16.
Arch Gynecol Obstet ; 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814455

ABSTRACT

OBJECTIVE: To explore the association between the concentration of maternal serum biomarkers and the risk of fetal carrying chromosome copy number variants (CNVs). METHODS: Pregnant women identified as high risk in the second-trimester serological triple screening and underwent traditional amniotic fluid karyotype analysis, along with comparative genomic hybridization array (aCGH)/copy number variation sequencing (CNV-seq), were included in the study. We divided the concentration of serum biomarkers, free beta-human chorionic gonadotropin (fß-hCG), alpha fetoprotein (AFP) and unconjugated estriol (uE3), into three levels: abnormally low, normal and abnormally high. The prevalence of abnormally low, normal and abnormally high serum fß-hCG, AFP and uE3 levels in pregnant women with aberrant aCGH/CNV-seq results and normal controls was calculated. RESULTS: Among the 2877 cases with high risk in the second-trimester serological triple screening, there were 98 chromosome abnormalities revealed by karyotype analysis, while 209 abnormalities were detected by aCGH/CNVseq (P<0.001) . The carrying rate of aberrant CNVs increased significantly when the maternal serum uE3 level was less than 0.4 multiple of median (MoM) of corresponding gestational weeks compared to normal controls, while the carrying rate of aberrant CNVs decreased significantly when the maternal serum fß-hCG level was greater than 2.5 MoM compared to normal controls. No significant difference was found in the AFP group. CONCLUSION: Low serum uE3 level (<0.4 MoM) was associated with an increased risk of aberrant CNVs.

17.
Ecol Evol ; 14(5): e11214, 2024 May.
Article in English | MEDLINE | ID: mdl-38725828

ABSTRACT

Fish are vital in river ecosystems; however, traditional investigations of fish usually cause ecological damage. Extracting DNA from aquatic environments and identifying DNA sequences offer an alternative, noninvasive approach for detecting fish species. In this study, the effects of environmental DNA (eDNA), coupled with PCR and next-generation sequencing, and electrofishing for identifying fish community composition and diversity were compared. In three subtropical rivers of southern China, fish specimens and eDNA in water were collected along the longitudinal (upstream-downstream) gradient of the rivers. Both fish population parameters, including species abundance and biomass, and eDNA OTU richness grouped 38 sampling sites into eight spatial zones with significant differences in local fish community composition. Compared with order-/family-level grouping, genus-/species-level grouping could more accurately reveal the differences between upstream zones I-III, midstream zones IV-V, and downstream zones VI-VIII. From the headwaters to the estuary, two environmental gradients significantly influenced the longitudinal distribution of the fish species, including the first gradient composed of habitat and physical water parameters and the second gradient composed of chemical water parameters. The high regression coefficient of alpha diversity between eDNA and electrofishing methods as well as the accurate identification of dominant, alien, and biomarker species in each spatial zone indicated that eDNA could characterize fish community attributes at a level similar to that of traditional approaches. Overall, our results demonstrated that eDNA metabarcoding can be used as an effective tool for revealing fish composition and diversity, which is important for using the eDNA technique in aquatic field monitoring.

18.
BMC Genomics ; 25(1): 430, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693501

ABSTRACT

BACKGROUND: Although multiple chicken genomes have been assembled and annotated, the numbers of protein-coding genes in chicken genomes and their variation among breeds are still uncertain due to the low quality of these genome assemblies and limited resources used in their gene annotations. To fill these gaps, we recently assembled genomes of four indigenous chicken breeds with distinct traits at chromosome-level. In this study, we annotated genes in each of these assembled genomes using a combination of RNA-seq- and homology-based approaches. RESULTS: We identified varying numbers (17,497-17,718) of protein-coding genes in the four indigenous chicken genomes, while recovering 51 of the 274 "missing" genes in birds in general, and 36 of the 174 "missing" genes in chickens in particular. Intriguingly, based on deeply sequenced RNA-seq data collected in multiple tissues in the four breeds, we found 571 ~ 627 protein-coding genes in each genome, which were missing in the annotations of the reference chicken genomes (GRCg6a and GRCg7b/w). After removing redundancy, we ended up with a total of 1,420 newly annotated genes (NAGs). The NAGs tend to be found in subtelomeric regions of macro-chromosomes (chr1 to chr5, plus chrZ) and middle chromosomes (chr6 to chr13, plus chrW), as well as in micro-chromosomes (chr14 to chr39) and unplaced contigs, where G/C contents are high. Moreover, the NAGs have elevated quadruplexes G frequencies, while both G/C contents and quadruplexes G frequencies in their surrounding regions are also high. The NAGs showed tissue-specific expression, and we were able to verify 39 (92.9%) of 42 randomly selected ones in various tissues of the four chicken breeds using RT-qPCR experiments. Most of the NAGs were also encoded in the reference chicken genomes, thus, these genomes might harbor more genes than previously thought. CONCLUSION: The NAGs are widely distributed in wild, indigenous and commercial chickens, and they might play critical roles in chicken physiology. Counting these new genes, chicken genomes harbor more genes than originally thought.


Subject(s)
Chickens , Genome , Molecular Sequence Annotation , Animals , Chickens/genetics , Base Composition , Telomere/genetics , Chromosomes/genetics , Genomics/methods
19.
Article in English | MEDLINE | ID: mdl-38818831

ABSTRACT

BACKGROUND: Acute non-variceal upper gastrointestinal bleeding (UGIB) is challenging in patients at high risk of re-bleeding in whom standard endoscopic treatment (ST) has limited effectiveness. Over-the-scope clips (OTSC) have shown promise in these patients although their precise role remains uncertain. AIMS: To confirm the role of OTSC in patients with UGIB at high risk of re-bleeding. METHODS: We systematically searched CENTRAL, MEDLINE and Embase from January 1st, 1970 to April 24, 2024 for randomised controlled trials (RCTs) comparing OTSC and ST in acute non-variceal UGIB with high re-bleeding risk. The GRADE framework assessed evidence certainty, while trial sequential analysis (TSA) controlled random errors and evaluated conclusion validity. RESULTS: We analysed four RCTs (319 patients); pooled risk ratio (RR) for clinical success at initial endoscopy favoured OTSC (RR = 1.30, 95% CI = 1.08-1.56, p = 0.006, I2 = 58%, moderate certainty of evidence). TSA showed the desired sample size was 410 and the cumulative Z curve crossing the trial sequential monitoring boundary. The pooled RR for re-bleeding within 30 days favoured OTSC (RR = 0.53, 95% CI = 0.30-0.94, p = 0.03, I2 = 0%, moderate certainty of evidence). There was no significant difference in 30-day mortality, or length of hospital or ICU stay. CONCLUSIONS: Moderate certainty evidence supports OTSC as a superior initial treatment for acute non-variceal UGIB with high re-bleeding risk. Further large-scale studies are needed to confirm OTSCs' role by exploring other prognostic outcomes and assessing cost-effectiveness and potential complications.

20.
Sci Total Environ ; : 173528, 2024 May 25.
Article in English | MEDLINE | ID: mdl-38802023

ABSTRACT

Microcystis, a type of cyanobacteria known for producing microcystins (MCs), is experiencing a global increase in blooms. They have been recently recognized as potential contributors to the widespread of antibiotic resistance genes (ARGs). By reviewing approximately 150 pieces of recent studies, a hypothesis has been formulated suggesting that significant fluctuations in MCs concentrations and microbial community structure during Microcystis blooms could influence the dynamics of waterborne ARGs. Among all MCs, microcystin-LR (MC-LR) is the most widely distributed worldwide, notably abundant in reservoirs during summer. MCs inhibit protein phosphatases or increase reactive oxygen species (ROS), inducing oxidative stresses, enhancing membrane permeability, and causing DNA damage. This further enhances selective pressures and horizontal gene transfer (HGT) chances of ARGs. The mechanisms by which Microcystis regulates ARG dissemination have been systematically organized for the first time, focusing on the secretion of MCs and the alterations of bacterial community structure. However, several knowledge gaps remain, particularly concerning how MCs interfere with the electron transport chain and how Microcystis facilitates HGT of ARGs. Concurrently, the predominance of Microcystis forming the algal microbial aggregates is considered a hotspot for preserving and transferring ARGs. Yet, Microcystis can deplete the nutrients from other taxa within these aggregates, thereby reducing the density of ARG-carrying bacteria. Therefore, further studies are needed to explore the 'symbiotic - competitive' relationships between Microcystis and ARG-hosting bacteria under varied nutrient conditions. Addressing these knowledge gaps is crucial to understand the impacts of the algal aggregates on dynamics of waterborne antibiotic resistome, and underscores the need for effective control of Microcystis to curb the spread of antibiotic resistance. Constructed wetlands and photocatalysis represent advantageous strategies for halting the spread of ARGs from the perspective of Microcystis blooms, as they can effectively control Microcystis and MCs while maintaining the stability of aquatic ecosystem.

SELECTION OF CITATIONS
SEARCH DETAIL
...