Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 262(Pt 1): 129911, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320640

ABSTRACT

The challenge of global climate change has drawn people's attention to the issue of carbon emissions. Reducing the use of petroleum-derived materials and increasing the use of biodegradable materials is a current focus of research, especially in the packaging materials industry. This study focused on the use of environmentally friendly plastics and waste paper as the main materials for packaging films. Poly(butylene succinate-co-lactate) (PBSL) was modified with maleic anhydride (MA) to form a biobased compatibilizer (MPBSL), which was then blended with a mixture (WPS) of waste-paper powder (WP) and silica aerogel powder (SP) to form the designed composite (MPBSL/WPS). The modification of PBSL with MA improved interfacial adhesion between PBSL and WPS. The structure, thermal, and mechanical properties, water vapor/oxygen barrier, toxicity, freshness, and biodegradability of MPBSL/WPS films were evaluated. Compared with the PBSL/WP film, the MPBSL/WPS film exhibited increased tensile strength at break of 4-13.5 MPa, increased initial decomposition loss at 5 wt% of 14-35 °C, and decreased water/oxygen permeabilities of 18-105 cm3/m2·d·Pa. In the water absorption test, the MPBSL/WPS film displayed about 2-6 % lower water absorption than that of the PBSL/WP film. In the cytocompatibility test, both MPBSL/WPS and PBSL/WP membrane were nontoxic. In addition, compared with PBSL/WP film and the control, the MPBSL/WPS film significantly reduced moisture loss, extended the shelf life, and prevented microbial growth in vegetable and meat preservation tests. Both MPBSL/WPS and PBSL/WP films were biodegradable in a 60-day soil biodegradation test; the degradation rate was 50 % when the WP or WPS content was 40 wt%. Our findings indicate that the composites would be suitable for environmentally sustainable packaging materials.


Subject(s)
Alkenes , Butylene Glycols , Lactic Acid , Maleic Anhydrides , Polymers , Humans , Powders , Oxygen , Succinates
2.
Biomater Adv ; 154: 213586, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37595523

ABSTRACT

In this study, thermally processed recycled fish teeth (FT) and fish scales, magnesium oxide (MgO), and biobased polyesters were fabricated into new bioactive and environmentally friendly composites. The magnesium oxide was encapsulated into laboratory-made fish scale-derived gelatin to form gelatin-MgO microparticles. Hydroxyapatite (HA) and gelatin were obtained by heat-treating FTs and fish scales, respectively. Compatibilized poly(butylene succinate) (CPBS), i.e., poly(butylene succinate) (PBS) to which had been added acrylic acid-grafted PBS (PBS-g-AA) compatibilizer, was combined with HA/gelatin-MgO (GHA) to form CPBS/GHA composites. The structure and tensile properties of the composites were investigated. The CPBS/GHA composites improved the adhesion and proliferation of osteoblast cells. Osteoblast growth, osteoclast growth inhibition, and the antibacterial effect of CPBS/GHA composites were primarily due to the slow release of magnesium ions into the environment from the gelatin-MgO microparticles. Higher levels of calcium and phosphorus species were observed for various PBS/HA and CPBS/GHA composites immersed in simulated body fluid. Mineralization measurements indicated that calcium and phosphate ions precipitated in osteoblasts placed on PBS/HA and CPBS/GHA composites. The study successfully developed a new composite material containing 5 wt% gelatin/MgO (phr), CPBS/HA 10 wt% and 1.0 % gelatin/MgO (an optimum formula of MgO). This composite exhibited superior tensile strength, antibacterial effect, osteoclast growth enhancement, and osteoclast growth reduction. These results suggest that the composites may facilitate the formation of new bone formation in vivo. The CPBS/GHA composites displayed good bone tissue repair ability in engineering applications.


Subject(s)
Durapatite , Magnesium Oxide , Animals , Durapatite/chemistry , Durapatite/pharmacology , Magnesium Oxide/chemistry , Osteogenesis , Gelatin/pharmacology , Gelatin/chemistry , Anti-Bacterial Agents , Ions
3.
ACS Appl Bio Mater ; 5(3): 1038-1046, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35171562

ABSTRACT

The development of green and renewable materials has attracted increasing attention in recent years. Hence, biocomposite-based packaging materials have been investigated to replace petrochemical materials in several industries, such as the food packaging and electronics packaging industries. The tensile and thermal properties of biocomposite-based packaging materials composed of polylactic acid and plant fiber were mainly investigated in the current literature, but fewer studies on the improvement of water resistance and water vapor/oxygen barrier properties of composite materials were performed. Herein, we describe a composite film comprising TBFP [a mixture of bamboo fiber powder (BFP) and silica aerogel powder] that was combined with modified polylactic acid (MPLA) in a melt-mixing process. The structure, morphology, tensile strength, thermal properties, water absorption properties, water vapor/oxygen barrier effect, cytocompatibility, and biodegradability of the composites were characterized. MPLA and TBFP improved the properties of these composites. Fourier transform infrared and X-ray diffraction spectra have shown interfacial adhesion of MPLA/TBFP, resulting in a tighter structure. Hence, the MPLA/TBFP composite had higher elongation at failure (ε), tensile strength at failure (δ), Young's modulus (E), initial decomposition temperature at 5 wt % loss (T5%), residual yields, oxygen transmission rate, contact angles, lower thermal conductivity (k) values, water vapor transmission rate, and water absorption and biodegradability compared with PLA and PLA/BFP. It indicates that the MPLA/TBFP composites exhibited more favorable tensile strength, water resistance, and water vapor/oxygen barrier than the PLA and PLA/BFP composites. Cell growth analysis showed that the MPLA/TBFP and PLA/BFP composites own good cytocompatibility. Moreover, the biodegradability of the PLA/BFP and MPLA/TBFP composites increased with the filler (BFP or TBFP) concentration. Because of these improvements in their properties, composites can be used as packing materials in many perspectives.


Subject(s)
Polyesters , Steam , Dietary Fiber , Oxygen , Polyesters/chemistry , Powders
4.
ACS Appl Bio Mater ; 4(1): 462-469, 2021 01 18.
Article in English | MEDLINE | ID: mdl-35014297

ABSTRACT

A biodegradable composite nanofiber containing polyhydroxyalkanoate (PHA) or modified PHA (MPHA) and treated fish-scale powder (TFSP) was prepared and characterized. The powder (20-80 nm) was prepared by grinding after treating FSP with water, acid, and heat (450 °C) to yield the TFSP. Composite nanofibers (100-500 nm long) of TFSP/PHA and TFSP/MPHA were fabricated by electrospinning using a biaxial feed method. The TFSP, which had a high hydroxyapatite content, was suitable as a filler for composites. The Ca/P ratio of the TFSP was similar to that of the human bone. Particle size analysis and analysis of scanning electron microscopy images indicated that, compared with the PHA/TFSP composite, the MPHA/TFSP nanofibers were more uniform and bonded more strongly in the matrix. The tensile strength at failure of the MPHA/TFSP specimens was enhanced and increased with increasing TFSP content. The elongation at failure was lower and decreased with increasing TFSP concentration. The water contact angle decreased with increasing TFSP content in PHA/TFSP and MPHA/TFSP nanofiber membranes. The TFSP enhanced the hydrophilic effect of the PHA/TFSP and MPHA/TFSP nanofiber membranes and provided a more suitable environment for cell growth. This composite nanofiber has potential in many biomedical applications.


Subject(s)
Animal Scales/metabolism , Biocompatible Materials/chemistry , Nanofibers/chemistry , Animals , Biocompatible Materials/metabolism , Biocompatible Materials/pharmacology , Cell Line , Cell Survival/drug effects , Durapatite/chemistry , Fishes/metabolism , Hydrophobic and Hydrophilic Interactions , Mice , Particle Size , Polyhydroxyalkanoates/chemistry , Surface Properties , Tensile Strength , Water/chemistry
5.
Int J Biol Macromol ; 165(Pt A): 1219-1228, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-33038395

ABSTRACT

We report herein new nanofibers prepared from fish scale gelatine (FSG), modified polylactide (MPLA), and a natural antibacterial agent of freshwater clam (Corbicula fluminea Estefanía) shell powder (FCSP). A preparation of FSG from Mullet scales is also described. To improve the biocompatibility and antibacterial activity of the non-woven nanofibers, MPLA/FCSP was added to enhance their antibacterial properties. FSG was then combined with MPLA/FCSP using an electrospinning technique to improve the biocompatibility of the as-fabricated 100-500-nm-diameter non-woven MPLA/FCSP/FSG nanofibers. The resulting tensile properties and morphological characteristics indicated enhanced adhesion among FSG, FCSP, and MPLA in the MPLA/FCSP/FSG nanofibers, as well as improved water resistance and tensile strength, compared with the PLA/FSG nanofibers. MTT assay, cell-cycle, and apoptosis analyses showed that both PLA/FSG and MPLA/FCSP/FSG nanofibers had good biocompatibility. Increasing the FSG content in PLA/FSG and MPLA/FCSP/FSG nanofibers enhanced cell proliferation and free-radical scavenging ability, but did not affect cell viability. Quantitative analysis of bacteria inhibition revealed that FCSP imparts antibacterial activity.


Subject(s)
Gelatin/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Animals , Corbicula/chemistry , Corbicula/microbiology , Fishes/microbiology , Fresh Water/chemistry , Mya/chemistry , Mya/microbiology , Nanofibers/microbiology , Polyesters/pharmacology
6.
Mater Sci Eng C Mater Biol Appl ; 108: 110506, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31923929

ABSTRACT

Sponges, which are parasitic on plants widely found in lakes and oceans, represent a vast resource that has yet to be effectively utilised. Sponge spicules (SS), which contain high amounts of silica dioxide, form after long-term biomineralisation. In this study, SS attached to plant bodies were subjected to acid and heat treatments, followed by grinding, to obtain 10-40-nm siliceous sponge spicules (SSS). SSS and polylactic acid (PLA) were then combined to create 50-450-nm PLA/SSS composite nanofibers. The morphology and bioactivity of the electrospun PLA/SSS nanofibers were examined; the tensile, thermal, and water-resistant properties of the fibers were also evaluated. Our results showed a dramatic enhancement in the thermal and tensile properties of PLA with increasing SSS content; specifically, a 3 wt% increase in SSS content resulted in a 47 °C increase in the initial decomposition temperature and a 73.3-MPa increase in Young's modulus. The water resistance of PLA/SSS increased with SSS content, as indicated by the increase in the water contact angle compared with PLA nanofibers. PLA/SSS nanofibers also exhibited slightly enhanced human foreskin fibroblast cell proliferation, good cytocompatibility, and an antibacterial effect. The enhanced antibacterial and biodegradable properties of PLA/SSS are expected to be useful in biomedical material applications.


Subject(s)
Biocompatible Materials/chemistry , Polymers/chemistry , Silicon Dioxide/chemistry , Anti-Bacterial Agents/pharmacology , Calcification, Physiologic , Cell Survival , Electrochemistry/methods , Escherichia coli/drug effects , Fibroblasts/metabolism , Humans , Hydrophobic and Hydrophilic Interactions , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Nanofibers/chemistry , Polyesters/chemistry , Regeneration , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus/drug effects , Stress, Mechanical , Temperature , Water/chemistry
7.
ACS Appl Bio Mater ; 2(5): 2262-2270, 2019 May 20.
Article in English | MEDLINE | ID: mdl-35030665

ABSTRACT

Novel antibacterial properties of composites prepared from thermally treated waste white scallop shell powder (TWWSSP) and modified polylactide (MPLA) are reported. The waste shell (calcium carbonate, CaCO3) was calcined at 1000 °C to completely form calcium oxide (CaO) and calcium hydroxide (Ca(OH)2). The composition and structure of the calcined product were characterized using energy dispersive spectrometry, Fourier transform infrared spectroscopy, and X-ray diffraction. The TWWSSP was studied to determine its effectiveness as a bactericidal agent when incorporated into MPLA to form composites. Infrared, tensile, and morphological characterizations indicated an enhanced adhesion between the TWWSSP and the MPLA in the composites and an improved compatibility compared with the PLA/WWSSP composites. The MTT assay and cell adhesion tests on the composites revealed that the relative growth rate of Mus dunni fibroblast (MDFB) cells increased with an increasing TWWSSP content, which indicated that the composites were not cytotoxic. Moreover, TWWSSP containing CaO and Ca(OH)2 enhanced the antibacterial activity of the composites; MPLA composites that contained TWWSSP had a better antibacterial activity. The antibacterial and biodegradable properties of the MPLA/TWWSSP and PLA/WWSSP composites have a great potential for many applications, especially food packaging and biomedical materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...