Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Aging Cell ; 21(12): e13734, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36278684

ABSTRACT

Diabetes mellitus (DM) is a common chronic metabolic disease caused by significant accumulation of advanced glycation end products (AGEs). Atrial fibrillation (AF) is a common cardiovascular complication of DM. Here, we aim to clarify the role and mechanism of atrial myocyte senescence in the susceptibility of AF in diabetes. Rapid transesophageal atrial pacing was used to monitor the susceptibility of mice to AF. Whole-cell patch-clamp was employed to record the action potential (AP) and ion channels in single HL-1 cell and mouse atrial myocytes. More importantly, anti-RAGE antibody and RAGE-siRNA AAV9 were used to investigate the relationship among diabetes, aging, and AF. The results showed that elevated levels of p16 and retinoblastoma (Rb) protein in the atrium were associated with increased susceptibility to AF in diabetic mice. Mechanistically, AGEs increased p16/Rb protein expression and the number of SA-ß-gal-positive cells, prolonged the action potential duration (APD), reduced protein levels of Cav1.2, Kv1.5, and current density of ICa,L , IKur in HL-1 cells. Anti-RAGE antibody or RAGE-siRNA AAV9 reversed these effects in vitro and in vivo, respectively. Furthermore, downregulating p16 or Rb by siRNA prevented AGEs-mediated reduction of Cav1.2 and Kv1.5 proteins expression. In conclusion, AGEs accelerated atrial electrical remodeling and cellular senescence, contributing to increased AF susceptibility by activating the p16/Rb pathway. Inhibition of RAGE or the p16/Rb pathway may be a potential therapeutic target for AF in diabetes.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , Diabetes Mellitus, Experimental , Mice , Animals , Atrial Fibrillation/drug therapy , Atrial Fibrillation/etiology , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Heart Atria/metabolism , Myocytes, Cardiac/metabolism , Action Potentials/physiology , Glycation End Products, Advanced/metabolism
2.
Chin J Nat Med ; 19(7): 540-544, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34247778

ABSTRACT

A large number of protease inhibitors have been found from leeches, which are essential in various physiological and biological processes. In the curret study, a novel elastase inhibitor was purified and characterized from the leech of Hirudinaria manillensis, which was named HMEI-A. Primary structure analysis showed that HMEI-A belonged to a new family of proteins. HMEI-A exerted inhibitory effects on elastase and showed potent abilities to inhibit elastase with an inhibition constant (Ki) of 1.69 × 10-8 mol·L-1. Further study showed that HMEI-A inhibited the formation of neutrophil extracellular trap (NET). These results suggested that HMEI-A from the leech of H. manillensis is a novel elastase inhibitor which can suppress NET formation. It may play a significant role in blood-sucking of leeches and is a potential candidate as an anti-inflammatory agent.


Subject(s)
Leeches , Pancreatic Elastase/antagonists & inhibitors , Protease Inhibitors/pharmacology , Amino Acid Sequence , Animals , Leeches/chemistry , Proteins
3.
J Mol Cell Cardiol ; 141: 82-92, 2020 04.
Article in English | MEDLINE | ID: mdl-32222458

ABSTRACT

Vascular dysfunction is a common pathological basis for complications in individuals affected by diabetes. Previous studies have established that endothelial dysfunction is the primary contributor to vascular complications in type 2 diabetes (T2DM). However, the role of vascular smooth muscle cells (VSMCs) in vascular complications associated with T2DM is still not completely understood. The aim of this study is to explore the potential mechanisms associated with Ca2+ handling dysfunction and how this dysfunction contributes to diabetic vascular smooth muscle impairment. The results indicated that endothelium-dependent vasodilation was impaired in diabetic aortae, but endothelium-independent vasodilation was not altered. Various vasoconstrictors such as phenylephrine, U46619 and 5-HT could induce vasoconstriction in a concentration-dependent manner, such that the dose-response curve was parallel shifted to the right in diabetic aortae, compared to the control. Vasoconstrictions mediated by L-type calcium (Cav1.2) channels were attenuated in diabetic aortae, but effects mediated by store-operated calcium (SOC) channels were enhanced. Intracellular Ca2+ concentration ([Ca2+]i) in VSMCs was detected by Fluo-4 calcium fluorescent probes, and demonstrated that SOC-mediated Ca2+ entry was increased in diabetic VSMCs. VSMC-specific knockout of STIM1 genes decreased SOC-mediated and phenylephrine-induced vasoconstrictive response in mice aortae. Additionally, Orai1 expression was up-regulated, Cav1.2 expression was downregulated, and the phenotypic transformation of diabetic VSMCs was determined in diabetic aortae. The overexpression of Orai1 markedly promoted the OPN expression of VSMCs, whereas SKF96365 (SOC channel blocker) reversed the phenotypic transformation of diabetic VSMCs. Our results demonstrated that the vasoconstriction response of aortic smooth muscle was weakened in type 2 diabetic rats, which was related to the downregulation of the Cav1.2 channel and the up-regulation of the SOC channel signaling pathway.


Subject(s)
Aorta/physiopathology , Calcium Signaling , Calcium/metabolism , Diabetes Mellitus, Experimental/physiopathology , Muscle Contraction/physiology , Muscle, Smooth, Vascular/physiopathology , Myocytes, Smooth Muscle/pathology , Animals , Biomarkers/metabolism , Calcium Channels/metabolism , Diabetes Mellitus, Experimental/blood , Gene Knockdown Techniques , Inhibitory Concentration 50 , Male , Phenotype , Phenylephrine/pharmacology , Rats, Zucker , Stromal Interaction Molecule 1/metabolism , Vasoconstriction , Vasodilation/physiology
4.
Naunyn Schmiedebergs Arch Pharmacol ; 392(1): 19-28, 2019 01.
Article in English | MEDLINE | ID: mdl-30182188

ABSTRACT

Statins are widely used in the treatment of hypercholesterolemia. Studies have demonstrated that statins could maintain vascular contractile function through inhibiting the transformation of vascular smooth muscle cells (VSMCs) from the contractile phenotype to the synthetic phenotype. However, the underlying mechanisms have not been fully elucidated. The effect of atorvastatin on the thoracic aorta of Sprague-Dawley rats cultured in serum-free conditions in vitro was evaluated. Aortic constriction was induced by high potassium, phenylephrine, and CaCl2. The protein expression levels of α1 adrenoceptor; inositol 1,4,5-trisphosphate (IP3) receptor; protein kinase Cδ (PKCδ); stromal interaction molecule 1 (STIM1); high-voltage activated dihydropyridine-sensitive (L type, Cav1.2) channels; and two contractile phenotype marker proteins [α-smooth muscle actin (α-SMA) and myosin (SM-MHC)] were determined by western blotting. Compared with the fresh control, the constriction of rat aorta was impaired after culture in serum-free medium for 24 h. The impaired contraction of cultured aortas was mediated by Cav1.2 and store-operated Ca2+ (SOC) channel, which could be improved by atorvastatin at 20 µM. The protein expression levels of α1 adrenoceptor, IP3 receptor, PKCδ, STIM1, Cav1.2, α-SMA, and SM-MHC in the aortas cultured in serum-free conditions were decreased significantly. Atorvastatin partially prevented the reduction in the contractility and the downregulation of these proteins in cultured aortas. The transformation of the VSMC phenotype is associated with the vasoconstriction dysfunction of cultured aortas. Atorvastatin may protect vascular function by modulating calcium signaling pathways.


Subject(s)
Aorta, Thoracic/drug effects , Atorvastatin/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Actins/metabolism , Animals , Aorta, Thoracic/physiology , Calcium Channels, L-Type/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Myosins/metabolism , Organ Culture Techniques , Protein Kinase C-delta/metabolism , Rats, Sprague-Dawley , Receptors, Adrenergic, alpha-1/metabolism , Stromal Interaction Molecule 1/metabolism , Vasoconstriction/drug effects
5.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(4): 1051-5, 2016 Apr.
Article in Chinese | MEDLINE | ID: mdl-30051996

ABSTRACT

With the rapid development of social economy, the environmental pollution and the ecological destruction are continuously deteriorating while sudden environmental pollution incidents occur frequently. Real-time monitoring harmful gases of the air take advantages of spectroscopic techniques for concentration measurement. Multipass optical cells are -widely used in absorption spectrometry technique to improve gas detection sensitivity under the condition of weak absorption. This paper proposes a spiral-torus type multipass optical device base on the structure of Herriott type cell. The optical device consists of multiple torus concave mirrors in a spiral way. Incident light propagates along with radical and axial direction in winding staircase pattern. The faculae on the inner wall present a spiral-type. The entrance and exit apertures are separated due to the spiral trace of optical rays, which increases the accessible adjustment of the apparatus. The effective optical length can be adjusted based on the proportional relationship to the reflective times. This device is characterized with easy adjustment and excellent mechanical performance due to its cylindrical structure. Based on ABCD matrix, the stability of the system was analyzed and the relationship between the number of reflections and the incident angle were discussed. With optical simulation software, we designed a device for separating polarized light, and the characteristics of its rotation was studied.

6.
Huan Jing Ke Xue ; 28(6): 1319-23, 2007 Jun.
Article in Chinese | MEDLINE | ID: mdl-17674743

ABSTRACT

Surface sediment of Guanting Reservoir was dredged up and dewatered in field, and pollutant and physicochemical characterizations were mensurated. The stabilization and agricultural land use of the sediment was also studied in the field. Results showed that the sediments have a higher clay content, bulk density (1.89 g x cm(-3)) and lower porosity (23.8%), higher deoxidize material and available nitrogen, phosphorus concentration. Heavy metal and organochlorinated pesticides concentration was lower than the class II of national standard for soil. Stabilized the sediment with sand soil and straw could improve the physical property and decrease the concentration of deoxidize material and available nitrogen, phosphorus. Stabilized sediment could be a suitable medium for alfalfa, tree and corn growth and used for agricultural land.


Subject(s)
Agriculture/methods , Geologic Sediments/chemistry , Water Pollution, Chemical/prevention & control , Water Supply/analysis , China , Environmental Monitoring , Water Pollution, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...