Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Medicine (Baltimore) ; 95(48): e5462, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27902598

ABSTRACT

The aim of the study was to investigate the correlation of glucose transporter-1 (Glut-1) and glucose transporter-3 (Glut-3) expression with F-18 FDG uptake in pulmonary inflammatory lesions.Twenty-two patients with pulmonary inflammatory lesions underwent positron emission tomography/computed tomography (PET/CT) examination preoperatively, and Glut-1 and Glut-3 expression were detected by immunohistochemistry in these lesions. Correlations of Glut-1 and Glut-3 with F-FDG uptake were assessed using Spearman's rank correlation test.The maximum standardized uptake value (SUVmax) of pulmonary inflammatory lesions in 22 patients was 0.50 to 7.50, with a mean value of 3.66 ±â€Š1.62. Immunohistochemical staining scores of Glut-1 and Glut-3 were 2.18 ±â€Š0.96 and 2.82 ±â€Š1.37, respectively. The expression of Glut-1 and Glut-3 was positively correlated with F-18 FDG uptake. Glut-3 expression was evidently higher than Glut-1 expression in 22 patients.Glut-1 and Glut-3 expressions are high in pulmonary inflammatory lesions, and Glut-3 plays a more important role in F-18 FDG uptake in pulmonary inflammatory lesions.


Subject(s)
Fluorodeoxyglucose F18/pharmacokinetics , Glucose Transporter Type 1/metabolism , Glucose Transporter Type 3/metabolism , Lung Diseases/diagnostic imaging , Radiopharmaceuticals/pharmacokinetics , Adult , Aged , Aged, 80 and over , Female , Humans , Immunohistochemistry , Inflammation/diagnostic imaging , Inflammation/metabolism , Male , Middle Aged , Positron Emission Tomography Computed Tomography
2.
Chin Med J (Engl) ; 128(13): 1724-7, 2015 Jul 05.
Article in English | MEDLINE | ID: mdl-26112710

ABSTRACT

BACKGROUND: To study the characters of high-frequency oscillations (HFOs) in the seizure onset zones (SOZ) and the nonseizure onset zones (NSOZ) in the electrocorticography (ECoG) of patients with neocortical epilepsy. METHODS: Only patients with neocortical epilepsy who were seizure-free after surgery as determined with ECoG were included. We selected patients with normal magnetic resonance imaging before surgery in order to avoid the influence of HFOs by other lesions. Three minutes preictal and 10 min interictal ECoG as recorded in 39 channels in the SOZ and 256 channels in the NSOZ were analyzed. Ripples and fast ripples (FRs) were analyzed by Advanced Source Analysis software (ASA, The Netherlands). Average duration of HFOs was analyzed in SOZ and NSOZ separately. RESULTS: For ripples, the permillage time occupied by HFOs was 0.83 in NSOZ and 1.17 in SOZ during the interictal period. During preictal period, they were 2.02 in NSOZ and 7.93 in SOZ. For FRs, the permillage time occupied by HFOs was 0.02 in NSOZ and 0.42 in SOZ during the interictal period. During preictal period, they were 0.03 in NSOZ and 2 in SOZ. CONCLUSIONS: High-frequency oscillations are linked to SOZ in neocortical epilepsy. Our study demonstrates the prevalent occurrence of HFOs in SOZ. More and more burst of HFOs, especially FRs, means the onset of seizures.


Subject(s)
Epilepsy/physiopathology , Seizures/physiopathology , Adolescent , Adult , Child , Electrocorticography , Electroencephalography , Female , Humans , Male , Young Adult
3.
Nanoscale ; 7(17): 8093-100, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25873204

ABSTRACT

Elementary sulphur (S) has been shown to be an excellent cathode material in energy storage devices such as Li-S batteries owing to its very high capacity. The major challenges associated with the sulphur cathodes are structural degradation, poor cycling performance and instability of the solid-electrolyte interphase caused by the dissolution of polysulfides during cycling. Tremendous efforts made by others have demonstrated that encapsulation of S materials improves their cycling performance. To make this approach practical for large scale applications, the use of low-cost technology and materials has become a crucial and new focus of S-based Li-ion batteries. Herein, we propose to use a low temperature spraying process to fabricate graphene/S electrode material, where the ink is composed of graphene flakes and the micron-sized S particles prepared by grinding of low-cost S powders. The S particles are found to be well hosted by highly conductive graphene flakes and consequently superior cyclability (∼70% capacity retention after 250 cycles), good coulombic efficiency (∼98%) and high capacity (∼1500 mA h g(-1)) are obtained. The proposed approach does not require high temperature annealing or baking; hence, another great advantage is to make flexible Li-ion batteries. We have also demonstrated two types of flexible batteries using sprayed graphene/S electrodes.

4.
Nanoscale ; 6(10): 5484-90, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24728234

ABSTRACT

In this study we prepared molybdenum trioxide (MoO3) nanorods having average lengths of 0.5-1.5 µm and widths of approximately 100-200 nm through a one-step mechanical break-down process involving favorable fracturing along the crystal direction. We controlled the dimensions of the as-prepared nanorods by applying various imposing times (15-90 min). The nanorods prepared over a reaction time of 90 min were, on average, much shorter and narrower relative to those obtained over 30 min. Evaluations of lithium-ion storage properties revealed that the electrochemical performance of these nanorods was much better than that of bulk materials. As cathodes, the nanorods could deliver a high specific capacity (>315 mA h g(-1)) with losses of less than 2% in the first cycle at a rate of 30 mA g(-1); as anodes, the specific capacity was 800 mA h g(-1) at a rate of 50 mA g(-1). Relative to α-MoO3 microparticles, these nanorods displayed significantly enhanced lithium-ion storage properties with higher reversible capacities and better rate performance, presumably because their much shorter diffusion lengths and higher specific surface areas allowed more-efficient insertion/deinsertion of lithium ions during the charge/discharge process. Accordingly, enhanced physical and/or chemical properties can be obtained through appropriate nanostructuring of materials.

5.
Small ; 10(5): 895-900, 2014 Mar 12.
Article in English | MEDLINE | ID: mdl-24170526

ABSTRACT

Electroactive MoSx catalysts on porous 3D sponges synthezied by a simple and scalable thermolysis process are proposed. Although no conducting materials are used to host the MoSx catalysts, they still serve as efficient electrodes for hydrogen evolution. The high current density of the MoSx-coated sponges are attributed to the large electrochemical surface area and their S-rich chemical structure.

6.
Nat Commun ; 4: 1687, 2013.
Article in English | MEDLINE | ID: mdl-23575691

ABSTRACT

The specific capacity of commercially available cathode carbon-coated lithium iron phosphate is typically 120-160 mAh g(-1), which is lower than the theoretical value 170 mAh g(-1). Here we report that the carbon-coated lithium iron phosphate, surface-modified with 2 wt% of the electrochemically exfoliated graphene layers, is able to reach 208 mAh g(-1) in specific capacity. The excess capacity is attributed to the reversible reduction-oxidation reaction between the lithium ions of the electrolyte and the exfoliated graphene flakes, where the graphene flakes exhibit a capacity higher than 2,000 mAh g(-1). The highly conductive graphene flakes wrapping around carbon-coated lithium iron phosphate also assist the electron migration during the charge/discharge processes, diminishing the irreversible capacity at the first cycle and leading to ~100% coulombic efficiency without fading at various C-rates. Such a simple and scalable approach may also be applied to other cathode systems, boosting up the capacity for various Li batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...