Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
AoB Plants ; 72014 Dec 04.
Article in English | MEDLINE | ID: mdl-25477251

ABSTRACT

Comprehensive studies on the genetic diversity and structure of endangered species are urgently needed to promote effective conservation and management activities. The big tree rhododendron, Rhododendron protistum var. giganteum, is a highly endangered species with only two known endemic populations in a small area in the southern part of Yunnan Province in China. Unfortunately, limited information is available regarding the population genetics of this species. Therefore, we conducted amplified fragment length polymorphism (AFLP) analysis to characterize the genetic diversity and variation of this species within and between remaining populations. Twelve primer combinations of AFLP produced 447 unambiguous and repetitious bands. Among these bands, 298 (66.67 %) were polymorphic. We found high genetic diversity at the species level (percentage of polymorphic loci = 66.67 %, h = 0.240, I = 0.358) and low genetic differentiation (Gst = 0.110) between the two populations. Gene flow between populations (Nm) was relatively high at 4.065. Analysis of molecular variance results revealed that 22 % of the genetic variation was partitioned between populations and 78 % of the genetic variation was within populations. The presence of moderate to high genetic diversity and low genetic differentiation in the two populations can be explained by life history traits, pollen dispersal and high gene flow (Nm = 4.065). Bayesian structure and principal coordinate analysis revealed that 56 sampled trees were clustered into two groups. Our results suggest that some rare and endangered species are able to maintain high levels of genetic diversity even at small population sizes. These results will assist with the design of conservation and management programmes, such as in situ and ex situ conservation, seed collection for germplasm conservation and reintroduction.

2.
Zhongguo Zhong Yao Za Zhi ; 38(22): 3838-44, 2013 Nov.
Article in Chinese | MEDLINE | ID: mdl-24558861

ABSTRACT

The paper is aimed at studying the diversity of endophytic fungi community from Paris polyphylla var. yunnanensis, and to provide a scientific basis for the utilization value of the endophytic fungi as bioactive material resources. In the present study, endophytic fungi were isolated from roots, rhizomes and leaves of wild P. polyphylla var. yunnanensis collected from Baoshan, Heqing county and Songming city of Yunnan province, and identified and classified by morphological methods together with its ITS sequence analysis. Seven and forty-nine strains of endophytic fungi were isolated from P. polyphylla var. yunnanensis. They were identified belonging to 41 genus. In these 41 genus, 3 genus exist in root only, 12 genus only exist in rhizome and 8 genus only exist in leaf. There was difference in endophytic fungi isolated from different sample sites. Endophytic fungi diversity from rhizomes of Heqing site was the highest. Endophytic fungi similarity coefficient was low among different sites and tissues. Based on these results, it is reasonable to propose that endophytic fungi of P. polyphylla var. yannanensis from different tissue and different sample sites has a certain difference which is possibly relate to their different habitats, different structure and composition of each tissue.


Subject(s)
Biodiversity , Endophytes/isolation & purification , Fungi/isolation & purification , Liliaceae/microbiology , Endophytes/classification , Endophytes/genetics , Fungi/classification , Fungi/genetics , Molecular Sequence Data , Phylogeny , Plant Leaves/microbiology , Plant Roots/microbiology , Plant Stems/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...