Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Neural Netw Learn Syst ; 33(3): 1107-1118, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33290233

ABSTRACT

Momentum technique has recently emerged as an effective strategy in accelerating convergence of gradient descent (GD) methods and exhibits improved performance in deep learning as well as regularized learning. Typical momentum examples include Nesterov's accelerated gradient (NAG) and heavy-ball (HB) methods. However, so far, almost all the acceleration analyses are only limited to NAG, and a few investigations about the acceleration of HB are reported. In this article, we address the convergence about the last iterate of HB in nonsmooth optimizations with constraints, which we name individual convergence. This question is significant in machine learning, where the constraints are required to impose on the learning structure and the individual output is needed to effectively guarantee this structure while keeping an optimal rate of convergence. Specifically, we prove that HB achieves an individual convergence rate of O(1/√t) , where t is the number of iterations. This indicates that both of the two momentum methods can accelerate the individual convergence of basic GD to be optimal. Even for the convergence of averaged iterates, our result avoids the disadvantages of the previous work in restricting the optimization problem to be unconstrained as well as limiting the performed number of iterations to be predefined. The novelty of convergence analysis presented in this article provides a clear understanding of how the HB momentum can accelerate the individual convergence and reveals more insights about the similarities and differences in getting the averaging and individual convergence rates. The derived optimal individual convergence is extended to regularized and stochastic settings, in which an individual solution can be produced by the projection-based operation. In contrast to the averaged output, the sparsity can be reduced remarkably without sacrificing the theoretical optimal rates. Several real experiments demonstrate the performance of HB momentum strategy.

2.
IEEE Trans Neural Netw Learn Syst ; 25(10): 1769-78, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25291732

ABSTRACT

A wide variety of learning problems can be posed in the framework of convex optimization. Many efficient algorithms have been developed based on solving the induced optimization problems. However, there exists a gap between the theoretically unbeatable convergence rate and the practically efficient learning speed. In this paper, we use the variational inequality (VI) convergence to describe the learning speed. To this end, we avoid the hard concept of regret in online learning and directly discuss the stochastic learning algorithms. We first cast the regularized learning problem as a VI. Then, we present a stochastic version of alternating direction method of multipliers (ADMMs) to solve the induced VI. We define a new VI-criterion to measure the convergence of stochastic algorithms. While the rate of convergence for any iterative algorithms to solve nonsmooth convex optimization problems cannot be better than O(1/√t), the proposed stochastic ADMM (SADMM) is proved to have an O(1/t) VI-convergence rate for the l1-regularized hinge loss problems without strong convexity and smoothness. The derived VI-convergence results also support the viewpoint that the standard online analysis is too loose to analyze the stochastic setting properly. The experiments demonstrate that SADMM has almost the same performance as the state-of-the-art stochastic learning algorithms but its O(1/t) VI-convergence rate is capable of tightly characterizing the real learning speed.


Subject(s)
Learning , Neural Networks, Computer , Nonlinear Dynamics , Stochastic Processes , Algorithms , Humans , Online Systems
3.
IEEE Trans Neural Netw ; 16(6): 1561-73, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16342496

ABSTRACT

This paper proposes a complete framework of posterior probability support vector machines (PPSVMs) for weighted training samples using modified concepts of risks, linear separability, margin, and optimal hyperplane. Within this framework, a new optimization problem for unbalanced classification problems is formulated and a new concept of support vectors established. Furthermore, a soft PPSVM with an interpretable parameter v is obtained which is similar to the v-SVM developed by Schölkopf et al., and an empirical method for determining the posterior probability is proposed as a new approach to determine v. The main advantage of an PPSVM classifier lies in that fact that it is closer to the Bayes optimal without knowing the distributions. To validate the proposed method, two synthetic classification examples are used to illustrate the logical correctness of PPSVMs and their relationship to regular SVMs and Bayesian methods. Several other classification experiments are conducted to demonstrate that the performance of PPSVMs is better than regular SVMs in some cases. Compared with fuzzy support vector machines (FSVMs), the proposed PPSVM is a natural and an analytical extension of regular SVMs based on the statistical learning theory.


Subject(s)
Algorithms , Artificial Intelligence , Databases, Factual , Information Storage and Retrieval/methods , Models, Statistical , Pattern Recognition, Automated/methods , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...