Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 60(14): 6166-6190, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28635286

ABSTRACT

Agonism of the 5-HT2C receptor represents one of the most well-studied and clinically proven mechanisms for pharmacological weight reduction. Selectivity over the closely related 5-HT2A and 5-HT2B receptors is critical as their activation has been shown to lead to undesirable side effects and major safety concerns. In this communication, we report the development of a new screening paradigm that utilizes an active site mutant D134A (D3.32) 5-HT2C receptor to identify atypical agonist structures. We additionally report the discovery and optimization of a novel class of nonbasic heterocyclic amide agonists of 5-HT2C. SAR investigations around the screening hits provided a diverse set of potent agonists at 5-HT2C with high selectivity over the related 5-HT2A and 5-HT2B receptor subtypes. Further optimization through replacement of the amide with a variety of five- and six-membered heterocycles led to the identification of 6-(1-ethyl-3-(quinolin-8-yl)-1H-pyrazol-5-yl)pyridazin-3-amine (69). Oral administration of 69 to rats reduced food intake in an ad libitum feeding model, which could be completely reversed by a selective 5-HT2C antagonist.


Subject(s)
Arginine/analogs & derivatives , Flavones/chemistry , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin 5-HT2 Receptor Agonists/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Animals , Arginine/chemical synthesis , Arginine/chemistry , Arginine/pharmacology , Brain/metabolism , Caco-2 Cells , Cell Membrane Permeability , Feeding Behavior/drug effects , Flavones/chemical synthesis , Flavones/pharmacology , HEK293 Cells , Humans , Male , Membranes, Artificial , Mice, Knockout , Microsomes, Liver/metabolism , Mutation , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2B/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Serotonin 5-HT2 Receptor Agonists/chemical synthesis , Serotonin 5-HT2 Receptor Agonists/pharmacokinetics , Serotonin 5-HT2 Receptor Agonists/pharmacology , Structure-Activity Relationship
2.
J Biol Chem ; 290(33): 20044-59, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26085101

ABSTRACT

Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE(-/-) mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance.


Subject(s)
Enzyme Inhibitors/pharmacology , Insulin/metabolism , Insulysin/antagonists & inhibitors , Animals , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/pharmacokinetics , HEK293 Cells , Humans , Insulysin/chemistry , Models, Molecular , Proteolysis
3.
J Med Chem ; 57(18): 7499-508, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25208139

ABSTRACT

G-protein-coupled receptor 119 (GPR119) is expressed predominantly in pancreatic ß-cells and in enteroendocrine cells in the gastrointestinal tract. GPR119 agonists have been shown to stimulate glucose-dependent insulin release by direct action in the pancreas and to promote secretion of the incretin GLP-1 by action in the gastrointestinal tract. This dual mechanism of action has generated significant interest in the discovery of small molecule GPR119 agonists as a potential new treatment for type 2 diabetes. Herein, we describe the discovery and optimization of a new class of pyridone containing GPR119 agonists. The potent and selective BMS-903452 (42) was efficacious in both acute and chronic in vivo rodent models of diabetes. Dosing of 42 in a single ascending dose study in normal healthy humans showed a dose dependent increase in exposure and a trend toward increased total GLP-1 plasma levels.


Subject(s)
Drug Discovery , Hypoglycemic Agents/pharmacology , Molecular Targeted Therapy , Pyridones/pharmacology , Receptors, G-Protein-Coupled/metabolism , Sulfones/pharmacology , Animals , Clinical Trials as Topic , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drug Design , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/therapeutic use , Male , Mice , Models, Molecular , Protein Conformation , Pyridones/chemistry , Pyridones/pharmacokinetics , Pyridones/therapeutic use , Rats , Rats, Sprague-Dawley , Receptors, G-Protein-Coupled/chemistry , Sulfones/chemistry , Sulfones/pharmacokinetics , Sulfones/therapeutic use
4.
Bioorg Med Chem Lett ; 23(13): 3914-9, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23683593

ABSTRACT

The 5-HT2C receptor has been implicated as a critical regulator of appetite. Small molecule activation of the 5-HT2C receptor has been shown to affect food intake and regulate body weight gain in rodent models and more recently in human clinical trials. Therefore, 5-HT2C is a well validated target for anti-obesity therapy. The synthesis and structure-activity relationships of a series of novel tetrahydropyrazinoisoquinolinone 5-HT2C receptor agonists are presented. Several members of this series were identified as potent 5-HT2C receptor agonists with high functional selectivity against the 5-HT2A and 5-HT2B receptors and reduced food intake in an acute rat feeding model upon oral dosing.


Subject(s)
Isoquinolines/pharmacology , Pyrazines/pharmacology , Receptor, Serotonin, 5-HT2C/metabolism , Animals , Crystallography, X-Ray , Dose-Response Relationship, Drug , Eating/drug effects , Humans , Isoquinolines/chemical synthesis , Isoquinolines/chemistry , Models, Molecular , Molecular Structure , Pyrazines/chemical synthesis , Pyrazines/chemistry , Rats , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 23(1): 330-5, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-23177783
6.
Bioorg Med Chem Lett ; 20(3): 1128-33, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20022752

ABSTRACT

Agonists of the 5-HT(2C) receptor have been shown to suppress appetite and reduce body weight in animal models as well as in humans. However, agonism of the related 5-HT(2B) receptor has been associated with valvular heart disease. Synthesis and biological evaluation of a series of novel and highly selective dihydroquinazolinone-derived 5-HT(2C) agonists with no detectable agonism of the 5-HT(2B) receptor is described. Among these, compounds (+)-2a and (+)-3c were identified as potent and highly selective agonists which exhibited weight loss in a rat model upon oral dosing.


Subject(s)
Anti-Obesity Agents/chemistry , Obesity/drug therapy , Quinazolinones/chemistry , Serotonin 5-HT2 Receptor Agonists , Serotonin Receptor Agonists/chemistry , Administration, Oral , Animals , Anti-Obesity Agents/administration & dosage , Anti-Obesity Agents/metabolism , Eating/drug effects , Eating/physiology , Humans , Male , Obesity/metabolism , Protein Binding/physiology , Quinazolinones/administration & dosage , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2C/metabolism , Serotonin Receptor Agonists/administration & dosage , Serotonin Receptor Agonists/metabolism
7.
Mol Pharmacol ; 76(6): 1211-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19767451

ABSTRACT

Successful development of 5-HT(2C) agonists requires selectivity versus the highly homologous 5-HT(2A) receptor, because agonism at this receptor can result in significant adverse events. (R)-9-Ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one (compound 1) is a potent 5-HT(2C) agonist exhibiting selectivity over the human 5-HT(2A) receptor. Evaluation of the compound at the rat 5-HT(2A) receptor, however, revealed potent binding and agonist functional activity. The physiological consequence of this higher potency was the observation of a significant increase in blood pressure in conscious telemeterized rats that could be prevented by ketanserin. Docking of compound 1 in a homology model of the 5-HT(2A) receptor indicated a possible binding mode in which the ethyl group at the 9-position of the molecule was oriented toward position 5.46 of the 5-HT(2A) receptor. Within the human 5-HT(2A) receptor, position 5.46 is Ser242; however, in the rat 5-HT(2A) receptor, it is Ala242, suggesting that the potent functional activity in this species resulted from the absence of the steric bulk provided by the -OH moiety of the Ser in the human isoform. We confirmed this hypothesis using site-directed mutagenesis through the mutation of both the human receptor Ser242 to Ala and the rat receptor Ala242 to Ser, followed by radioligand binding and second messenger studies. In addition, we attempted to define the space allowed by the alanine by evaluating compounds with larger substitutions at the 9-position. The data indicate that position 5.46 contributed to the species difference in 5-HT(2A) receptor potency observed for a pyrazinoisoindolone compound, resulting in the observation of a significant cardiovascular safety signal.


Subject(s)
Isoindoles/pharmacology , Pyrazines/pharmacology , Serotonin 5-HT2 Receptor Agonists , Animals , Binding, Competitive/drug effects , Blood Pressure/drug effects , Calcium/metabolism , Cell Line , Dogs , Genetic Variation , Humans , Isoindoles/metabolism , Ketanserin/pharmacology , Macaca fascicularis , Male , Motor Activity/drug effects , Mutagenesis, Site-Directed , Protein Binding/drug effects , Pyrazines/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2A/metabolism , Receptor, Serotonin, 5-HT2C/genetics , Receptor, Serotonin, 5-HT2C/physiology , Sequence Homology, Amino Acid , Serotonin Antagonists/pharmacology , Species Specificity , Structural Homology, Protein
8.
J Med Chem ; 50(6): 1365-79, 2007 Mar 22.
Article in English | MEDLINE | ID: mdl-17315987

ABSTRACT

Robust pharmaceutical treatment of obesity has been limited by the undesirable side-effect profile of currently marketed therapies. This paper describes the synthesis and optimization of a new class of pyrazinoisoindolone-containing, selective 5-HT2C agonists as antiobesity agents. Key to optimization of the pyrazinoisoindolone core was the identification of the appropriate substitution pattern and functional groups which led to the discovery of (R)-9-ethyl-1,3,4,10b-tetrahydro-7-trifluoromethylpyrazino[2,1-a]isoindol-6(2H)-one (58), a 5-HT2C agonist with >300-fold functional selectivity over 5-HT2B and >70-fold functional selectivity over 5-HT2A. Oral dosing of 58 reduced food intake in an acute rat feeding model, which could be completely reversed by a selective 5-HT2C antagonist and caused a reduction in body weight gain in a 4-day rat model.


Subject(s)
Anti-Obesity Agents/chemical synthesis , Indoles/chemical synthesis , Pyrazines/chemical synthesis , Serotonin 5-HT2 Receptor Agonists , Administration, Oral , Animals , Anti-Obesity Agents/chemistry , Anti-Obesity Agents/pharmacology , Blood-Brain Barrier/metabolism , Cell Line , Conditioning, Operant , Feeding Behavior/drug effects , Humans , Indoles/chemistry , Indoles/pharmacology , Isoindoles , Male , Mice , Necrosis , Parietal Cells, Gastric/drug effects , Parietal Cells, Gastric/pathology , Pyrazines/chemistry , Pyrazines/pharmacology , Radioligand Assay , Rats , Rats, Sprague-Dawley , Stereoisomerism , Weight Gain/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...