Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 916: 170136, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38242463

ABSTRACT

Carbonaceous aerosols (CA) have a high impact on air quality and climate. However, the composition and spatial variability of CA in the marine boundary layer (MBL) remain understudied, especially in the remote regions. Here, atmospheric organic carbon (OC) and elemental carbon (EC) measurements using DRI Model 2001 Thermal/Optical Carbon Analyzer in the MBL were performed during the Chinese Antarctic (2019-2020) and Arctic (2021) research expedition, spanning about 160 latitudes. Due to varying intensities of atmospheric transport from the continents, a significant latitudinal gradient in OC and EC was observed. OC exhibited the highest concentration over the coastal East Asia (CEA), with a mean of 4324 ng m-3 (358-18027 ng m-3), followed by the Arctic Ocean (AO). Similar OC levels were detected over the Southern Ocean (SO) and the Antarctic Ice Sheet (AIS). Similarly, the highest EC was also observed over CEA, with a mean of 867 ng m-3 (71-3410 ng m-3), followed by AO and SO, while the lowest EC appeared over the AIS, with a mean of 30 ng m-3 (2-70 ng m-3). The lower Char-EC/Soot-EC ratios over AO and CEA compared to SO and AIS indicated that fossil fuel combustion contributed more to EC over AO and CEA, while biomass burning played a more significant role in EC levels over SO and AIS. The high OC/EC ratio over AIS was associated with an extremely low EC level and the formation of secondary OC over AIS. SBDART model results suggested that EC had a net warming effect on the atmospheric column, with the highest direct radiative effects (DRE) over AO (5.50 ± 0.15 W m-2, corresponding a heating rate of 0.15 K day-1) and the lowest DRE over SO (1.35 ± 0.04 W m-2, corresponding a heating rate of 0.04 K day-1).

2.
Nat Commun ; 14(1): 7898, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036501

ABSTRACT

Airborne microplastics (MPs) can undergo long range transport to remote regions. Yet there is a large knowledge gap regarding the occurrence and burden of MPs in the marine boundary layer, which hampers comprehensive modelling of their global atmospheric transport. In particular, the transport efficiency of MPs with different sizes and morphologies remains uncertain. Here we show a hemispheric-scale analysis of airborne MPs along a cruise path from the mid-Northern Hemisphere to Antarctica. We present the inaugural measurements of MPs concentrations over the Southern Ocean and interior Antarctica and find that MPs fibers are transported more efficiently than MPs fragments along the transect, with the transport dynamics of MPs generally similar to those of non-plastic particles. Morphology is found to be the dominant factor influencing the hemispheric transport of MPs to remote Antarctic regions. This study underlines the importance of long-range atmospheric transport in MPs cycling dynamics in the environment.

3.
BMC Pharmacol Toxicol ; 24(1): 10, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36810140

ABSTRACT

PURPOSE: The study was aimed at evaluating the bioequivalence and safety of oseltamivir phosphate for suspension, provided by Shenzhen Beimei Pharmaceutical Co. Ltd. and manufactured by Hetero Labs Limited, and the reference product TAMIFLU® in healthy Chinese subjects. METHODS: A single-dose, randomized, two-phase, self-crossed model was adopted. Among 80 healthy subjects, 40 subjects in the fasting group and 40 subjects in the fed group. Subjects in the fasting group were randomized into two sequences according to the proportion of 1:1, each given 75 mg/12.5 mL of Oseltamivir Phosphate for Suspension or TAMIFLU®, and cross-administered after 7 days. Postprandial group is the same as fasting group. RESULTS: The Tmax of TAMIFLU® and Oseltamivir Phosphate for Suspension in the fasting group were 1.50 h and 1.25 h, which in the fed group were both 1.25 h. Geometrically adjusted mean ratios of the PK parameters of Oseltamivir Phosphate for Suspension along with TAMIFLU® under fasting and postprandial conditions were in the range of 80.00-125.00% at the 90% confidence interval (CI). The 90% CI of Cmax, AUC0-t, AUC0-∞ for fasting group and postprandial group were (92.39,106.50), (94.26,100.67), (94.32,100.89) and (93.61,105.83),(95.64,100.19),(96.06,102.66). Among the subjects on medication, a total of 18 subjects reported 27 adverse events, all of which were treatment-emergent adverse events (TEAEs), six of these TEAEs were rated as grade 2 in severity and the rest were as grade 1. The number of TEAEs in the test product and the reference product were 14,13 respectively. CONCLUSION: Two Oseltamivir phosphate for suspensions are safe and bioequivalent.


Subject(s)
Fasting , Oseltamivir , Humans , Therapeutic Equivalency , Suspensions , Cross-Over Studies , Area Under Curve , Healthy Volunteers , Phosphates , Tablets
4.
Environ Pollut ; 287: 117601, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34147781

ABSTRACT

We investigated how sulfur (S) application prior to wheat cultivation under wheat-rice rotation influences the uptake of cadmium (Cd) in rice grown in low- and high-Cd soils. A pot experiment was conducted with four S levels (0, 30, 60, 120 mg S kg-1) and two Cd rates (low and high, 0.35 and 10.35 mg Cd kg-1) supplied to wheat. Part of the wheat straw was returned to the soil before planting rice, which was cultivated for 132 days. To explore the key mechanisms by which S application controlled Cd accumulation in brown rice, (1) soil pore water at the key growth stages was sampled, and dissolved Cd and S species concentrations were determined; (2) rice plant tissues (including iron plaque on the root surface) were sampled at maturity for Cd and S analysis. With increasing S level, Cd accumulation in brown rice peaked at 60 mg S kg-1, irrespective of soil Cd levels. For high-Cd soils, concentrations of Cd in brown rice increased by 57%, 228%, and 100% at 30, 60, and 120 mg S kg-1, respectively, compared with no S treatment. The increase in brown rice Cd by low S levels (0-60 mg kg-1) could be attributed to (1) the S-induced increase in soil pore water sulfate increasing the Cd influx into rice roots and (2) the S-induced increase in leaf S promoting Cd translocation into brown rice. However, brown rice Cd decreased at 120 mg S kg-1 due to (1) low Cd solubility at 120 mg S kg-1 and (2) root and leaf S uptake, which inhibited Cd uptake. Sulfur application to wheat crop increased the risk of Cd accumulation in brown rice. Thus, applying S-containing fertilizers to Cd-contaminated paddy soils is not recommended.


Subject(s)
Oryza , Soil Pollutants , Cadmium/analysis , Crop Production , Soil , Soil Pollutants/analysis , Sulfur , Triticum
5.
Int J Mol Sci ; 16(12): 28498-509, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26633374

ABSTRACT

Volvariella volvacea, usually harvested in its egg stage, is one of the most popular mushrooms in Asia. The rapid transition from the egg stage to elongation stage, during which the stipe stretches to almost full length leads to the opening of the cap and rupture of the universal veil, and is considered to be one of the main factors that negatively impacts the yield and value of V. volvacea. Stipe elongation is a common phenomenon in mushrooms; however, the mechanisms, genes and regulation involved in stipe elongation are still poorly understood. In order to study the genes related to the stipe elongation, we analyzed the transcription of laccase genes in stipe tissue of V. volvacea, as some laccases have been suggested to be involved in stipe elongation in Flammulina velutipes. Based on transcription patterns, the expression of Vvlcc3 was found to be the highest among the 11 laccase genes. Moreover, phylogenetic analysis showed that VvLCC3 has a high degree of identity with other basidiomycete laccases. Therefore, we selected and cloned a laccase gene, named Vvlcc3, a cDNA from V. volvacea, and expressed the cDNA in Pichia pastoris. The presence of the laccase signature L1-L4 on the deduced protein sequence indicates that the gene encodes a laccase. Phylogenetic analysis showed that VvLCC3 clusters with Coprinopsis cinerea laccases. The ability to catalyze ABTS (2,2'-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) oxidation proved that the product of the Vvlcc3 gene was a functional laccase. We also found that the expression of the Vvlcc3 gene in V. volvacea increased during button stage to the elongation stage; it reached its peak in the elongation stage, and then decreased in the maturation stage, which was similar to the trend in the expression of Fv-lac3 and Fv-lac5 in F. velutipes stipe tissue. The similar trend in expression level of these laccase genes of F. velutipes suggested that this gene could be involved in stipe elongation in V. volvacea.


Subject(s)
Basidiomycota/genetics , Cloning, Molecular , Gene Expression , Laccase/genetics , Amino Acid Sequence , Basidiomycota/metabolism , Fruiting Bodies, Fungal/genetics , Gene Expression Profiling , Gene Expression Regulation, Fungal , Gene Order , Genetic Loci , Genome, Fungal , Laccase/chemistry , Laccase/metabolism , Molecular Sequence Data , Multigene Family , Phylogeny , Sequence Alignment , Transcriptome
6.
Gene ; 563(2): 142-9, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25776201

ABSTRACT

Fungal laccases play important roles in matrix degradation. Eleven laccase genes, including three novel ones (designated lac1, lac2 and lac4) were identified after sequencing the entire genome of the edible, white-rot fungus Flammulina velutipes. Analysis using bioinformatics revealed that all of the laccases, except lac3, possess a signal peptide. These laccase proteins consist of 502-670 amino acids and have predicted molecular weights ranging from 55kDa to 74kDa. These proteins each contain four copper-binding sites, except for Lac10. Transcriptomes were sequenced at different developmental stages and in different fruiting body tissues to analyze if there was differential expression of laccase genes. The novel laccase gene lac4 exhibited the highest expression levels among all of the observed laccases at every developmental stage and in all fruiting body tissues examined. We conclude that laccases in F. velutipes play a role not only in lignin degradation, but also in fruiting body formation and development.


Subject(s)
Basidiomycota/genetics , Flammulina/genetics , Fungi/genetics , Multigene Family , Amino Acid Sequence , Cloning, Molecular , Fungal Proteins/genetics , Gene Expression Regulation, Fungal , Laccase/genetics , Molecular Sequence Data , Sequence Alignment/methods , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...