Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 91
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; 400: 130672, 2024 May.
Article in English | MEDLINE | ID: mdl-38583675

ABSTRACT

Tetracycline exerts an inhibitory effect on anaerobic digestion, inducing stressed microbial activities and even system failure. Continuous-flow reactors (CFRs) and sequencing batch reactors (SBRs) were employed along with the dosage of powdered activated carbon (PAC) to enhance tetracycline removal during anaerobic digestion of complex organic compounds. PAC increased the maximum methane production rate by 15.6% (CFRs) and 13.8% (SBRs), and tetracycline biodegradation by 24.4% (CFRs) and 19.2% (SBRs). CFRs showed higher tetracycline removal and methane production rates than SBRs. Geobacter was enriched in CFRs, where Methanothrix was enriched with the addition of PAC. Desulfomicrobium harbored abundant propionate degradation-related genes, significantly correlating with tetracycline removal. The genes encoding carbon dioxide reduction in Methanothrix along with the detection of Geobacter might indicate direct interspecies electron transfer for methanogenesis in CFRs and PAC-added reactors. The study offers new insights into anaerobic digestion under tetracycline-stressed conditions and strategies for optimizing tetracycline removal.


Subject(s)
Bioreactors , Tetracycline , Tetracycline/pharmacology , Tetracycline/metabolism , Anaerobiosis , Biodegradation, Environmental , Charcoal/pharmacology , Methane/metabolism , Powders , Organic Chemicals/metabolism
2.
Environ Res ; 252(Pt 3): 118911, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38604482

ABSTRACT

Mechanistic understanding of acetoclastic methanogenesis is pivotal for optimizing anaerobic digestion for efficient methane production. In this study, two different operational modes, continuous flow reactor (CFR) and sequencing batch reactor (SBR), accompanied with solids retention times (SRT) of 10 days (SBR10d and CFR10d) and 25 days (SBR25d and CFR25d) were implemented to elucidate their impacts on microbial communities and energy metabolism of methanogens in acetate-fed systems. Microbial community analysis revealed that the relative abundance of Methanosarcina (16.0%-46.0%) surpassed Methanothrix (3.7%-22.9%) in each reactor. SBRs had the potential to enrich both Methanothrix and Methanosarcina. Compared to SBRs, CFRs had lower total relative abundance of methanogens. Methanosarcina exhibited a superior enrichment in reactors with 10-day SRT, while Methanothrix preferred to be acclimated in reactors with 25-day SRT. The operational mode and SRT were also observed to affect the distribution of acetate-utilizing bacteria, including Pseudomonas, Desulfocurvus, Mesotoga, and Thauera. Regarding enzymes involved in energy metabolism, Ech and Vho/Vht demonstrated higher relative abundances at 10-day SRT compared to 25-day SRT, whereas Fpo and MtrA-H showed higher relative abundances in SBRs than those in CFRs. The relative abundance of genes encoding ATPase harbored by Methanothrix was higher than Methanosarcina at 25-day SRT. Additionally, the relative abundance of V/A-type ATPase (typically for methanogens) was observed higher in SBRs compared to CFRs, while the F-type ATPase (typically for bacteria) exhibited higher relative abundance in CFRs than that in SBRs.


Subject(s)
Bioreactors , Energy Metabolism , Methane , Bioreactors/microbiology , Methane/metabolism , Acetates/metabolism , Methanosarcina/metabolism , Methanosarcina/genetics , Anaerobiosis , Acclimatization
3.
J Environ Manage ; 356: 120593, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38508004

ABSTRACT

Operational mode and powdered activated carbon (PAC) are key factors facilitating microbial syntrophy and interspecies electron transfer during anaerobic digestion, consequently benefiting process stability and efficient methanogenesis. In this study, continuous-flow reactor (CFR) and sequencing batch reactor (SBR), with and without the addition of PAC, respectively, were operated to examine their effects on system performance and methanogenic activity. Based on the cycle-test result, the PAC-amended CFR (CFRPAC) recorded both the highest methane yield (690.1 mL/L) and the maximum CH4 production rate (28.8 mL/(L·h)), while SBRs exhibited slow methanogenic rates. However, activity assays indicated that SBRs were beneficial for organics removal in batch experiments fed with peptone. Taxonomic and functional analysis confirmed that CFRs were optimal for proliferating oligotrophs (e.g., Geobacter) and SBRs were more suitable for copiotrophs (e.g., Desulfobulbus). Metagenomic analysis revealed that CFRs had efficient acetate metabolic pathways from propionate and ethanol, whereas SBRs did not, resulting in the buildup of propionate. Furthermore, Methanobacterium and Methanothrix were acclimated to the different operational conditions, while acetoclastic Methanosarcina and hydrogenotrophic Methanolinea were acclimated in SBRs (5.1-13.4%) and CFRs (0.3-1.7%), respectively. This study confirmed the enhancement of microbial syntrophy by the addition of PAC as well as the acclimation of electroactive bacteria (e.g., Geobacter) with complex organic substances.


Subject(s)
Charcoal , Propionates , Propionates/metabolism , Anaerobiosis , Powders , Oxidation-Reduction , Methane , Bioreactors
4.
Environ Res ; 241: 117607, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37939810

ABSTRACT

Anaerobic ethanol oxidation relies on syntrophic interactions among functional microorganisms to become thermodynamically feasible. Different operational modes (sequencing batch reactors, SBRs, and continuous flow reactors, CFRs) and solids retention times (SRT, 25 days and 10 days) were employed in four ethanol-fed reactors, named as SBR25d, SBR10d, CFR25d, and CFR10d, respectively. System performance, syntrophic relationships, microbial communities, and metabolic pathways were examined. During the long-term operation, 2002.7 ± 56.0 mg COD/L acetate was accumulated in CFR10d due to the washout of acetotrophic methanogens. Microorganisms with high half-saturation constants were enriched in reactors of 25-day SRT. Moreover, ethanol oxidizing bacteria and acetotrophic methanogens with high half-saturation constants could be acclimated in SBRs. In SBRs, Syner-01 and Methanothrix dominated, and the low SRT of 10 days increased the relative abundance of Geobacter to 38.0%. In CFRs, the low SRT of 10 days resulted in an increase of Desulfovibrio among syntrophic bacteria, and CFR10d could be employed in enriching hydrogenotrophic methanogens like Methanobrevibacter.


Subject(s)
Acetates , Bacteria , Bacteria/metabolism , Anaerobiosis , Acetates/metabolism , Ethanol , Bioreactors , Methane
5.
Water Res ; 249: 120896, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38006787

ABSTRACT

Efficient anaerobic digestion requires the syntrophic cooperation among diverse microorganisms with various metabolic pathways. In this study, two operational modes, i.e., the sequencing batch reactor (SBR) and the continuous-flow reactor (CFR), were adopted in ethanol-fed systems with or without the supplement of powdered activated carbon (PAC) to examine their effects on ethanol metabolic pathways. Notably, the operational mode of SBR and the presence of CO2 facilitated ethanol metabolism towards propionate production. This was further evidenced by the dominance of Desulfobulbus, and the increased relative abundances of enzymes (EC: 1.2.7.1 and 1.2.7.11) involved in CO2 metabolism in SBRs. Moreover, SBRs exhibited superior biomass-based rates of ethanol degradation and methanogenesis, surpassing those in CFRs by 53.1% and 22.3%, respectively. Remarkably, CFRs with the extended solids retention time enriched high relative abundances of Geobacter of 71.7% and 70.4% under conditions with and without the addition of PAC, respectively. Although both long-term and short-term PAC additions led to the increased sludge conductivity and a reduced methanogenic lag phase, only the long-term PAC addition resulted in enhanced rates of ethanol degradation and propionate production/degradation. The strategies by adjusting operational mode and PAC addition could be adopted for modulating the anaerobic ethanol metabolic pathway and enriching Geobacter.


Subject(s)
Ethanol , Propionates , Anaerobiosis , Carbon Dioxide , Charcoal , Metabolic Networks and Pathways , Bioreactors , Methane/metabolism , Sewage
6.
J Hazard Mater ; 459: 132235, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37562349

ABSTRACT

Struvite recovered from wastewater contains high concentration of fecal indicator bacteria (FIB), porcine adenoviruses (PAdV) and antibiotic resistance genes (ARGs), becoming potential resources of these microbial hazards. Understanding the precipitation behavior of pathogenic indicators and ARGs with suspended solids (SS) will provide the possible strategy for the control of co-precipitation. In this study, SS was divided into high-density SS (separated by centrifugation) and low-density SS (further separated by filtration), and the role of SS on the co-precipitation of FIB, PAdV and ARGs was investigated. The distribution analysis showed that 35.5-73.0% FIB, 79.6% PAdV and 64.5-94.8% ARGs existed in high-density SS, while the corresponding values were 26.9-64.4%, 11.7% and 3.5-24.3% in low-density SS. During struvite generation, 82.7-96.9% FIB, 75.5% PAdV and 56.3-86.5% ARGs were co-precipitated into struvite. High-density SS contributed 20.7-68.5% FIB, 63.9% PAdV and 38.7-87.2% ARGs co-precipitation, and the corresponding contribution of low-density SS was 31.4-79.2%, 3.9% and 6.2-54.7%. Moreover, the precipitated SS in struvite obviously decreased inactivation efficiency of FIB and ARGs in drying process. These results provide a potential way to control the co-precipitation and inactivation of FIB, PAdV and ARGs in struvite through removing high-density SS prior to struvite recovery.


Subject(s)
Phosphates , Wastewater , Swine , Animals , Struvite , Phosphates/analysis , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Genes, Bacterial
7.
Bioresour Technol ; 385: 129431, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37394044

ABSTRACT

Anaerobic digestion (AD) is promising for treating high-strength wastewater. However, the effect of operational parameters on microbial communities of AD with sulfate is not yet fully understood. To explore this, four reactors were operated under rapid- and slow-filling modes with different organic carbons. Reactors in the rapid-filling mode generally exhibited a fast kinetic property. For example, the degradation of ethanol was 4.6 times faster in ASBRER than in ASBRES, and the degradation of acetate was 11.2 times faster in ASBRAR than in ASBRAS. Nevertheless, reactors in the slow-filling mode could mitigate propionate accumulation when using ethanol as organic carbon. Taxonomic and functional analysis further supported that rapid- and slow-filling modes were suitable for the growth of r-strategists (e.g., Desulfomicrobium) and K-strategists (e.g., Geobacter), respectively. Overall, this study provides valuable insights into microbial interactions of AD processes with sulfate through the application of the r/K selection theory.


Subject(s)
Bioreactors , Wastewater , Anaerobiosis , Sulfur Oxides , Sulfates/metabolism , Ethanol , Methane/metabolism
8.
J Hazard Mater ; 455: 131633, 2023 08 05.
Article in English | MEDLINE | ID: mdl-37196443

ABSTRACT

Struvite production can recover ammonia and phosphorous from digested wastewater as fertilizer. During struvite generation, most of the heavy metals was co-precipitated with ammonia and phosphorous into struvite. Understanding the precipitation behavior of heavy metals with suspended solids (SS) might provide the possible strategy for the control of co-precipitation. In this study, the distribution of heavy metals in SS and their role on the co-precipitation during struvite recovery from digested swine wastewater were investigated. The results showed that the concentration of heavy metal (including Mn, Zn, Cu, Ni, Cr, Pb and As) ranged from 0.05 to 17.05 mg/L in the digested swine wastewater. The distribution analysis showed that SS with particles > 50 µm harbored most of individual heavy metal (41.3-55.6%), followed by particles 0.45-50 µm (20.9-43.3%), and SS-removed filtrate (5.2-32.9%). During struvite generation, 56.9-80.3% of individual heavy metal was co-precipitated into struvite. The contributions of SS with particles > 50 µm, 0.45-50 µm, and SS-removed filtrate on the individual heavy metal co-precipitation were 40.9-64.3%, 25.3-48.3% and 1.9-22.9%, respectively. These finding provides potential way for controlling the co-precipitation of heavy metals in struvite.


Subject(s)
Metals, Heavy , Wastewater , Animals , Swine , Struvite , Waste Disposal, Fluid/methods , Ammonia/analysis , Metals, Heavy/analysis , Phosphorus , Phosphates/analysis
9.
Sci Total Environ ; 856(Pt 1): 159080, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36179835

ABSTRACT

Intensive animal farming produces large volume of digested liquid, and overdose application often causes the pollution of surface water and groundwater. Therefore, post-treatment is very necessary for the discharging of surplus digested liquid, but the removal of high concentrations of suspended solids (SS) in the digested liquid is a challenge. In this study, the effect of Ca(ClO)2 pretreatment on SS flocculation removal of digested dairy wastewater was investigated. The results showed that, without Ca(ClO)2 pretreatment, the flocculation by polyacrylamide (PAM), polyferric sulfate (PFS) or polymeric aluminum chloride (PAC) only removed 42.6 %-50.4 % SS from anaerobic digested liquid. With the combination of Ca(ClO)2 pretreatment and PAC flocculation together, the SS removal efficiency can reach 80 %. The total chemical oxygen demand (TCOD) removal had a similar trend with SS removal, but soluble chemical oxygen demand (SCOD) removal was less affected by the pretreatment and flocculation. More than 75 % of orthophosphate (SRP) and total soluble phosphorus (TSP) was removed after Ca(ClO)2 pretreatment and flocculation with PFS or PAC. Ca(ClO)2 pretreatment also effectively inactivated fecal bacteria. The mechanisms of Ca(ClO)2 pretreatment enhancing SS flocculation removal were further elucidated. The SS removal was the action of ClO- and Ca2+ together. The function of ClO- was to break down suspended particles, change the surface, and decrease the absolute Zeta potential, while the function of Ca2+ was to form precipitation. This result indicates that Ca(ClO)2 pretreatment can effectively enhance the SS flocculation removal of anaerobic digested liquid.


Subject(s)
Waste Disposal, Fluid , Wastewater , Flocculation , Waste Disposal, Fluid/methods , Biological Oxygen Demand Analysis
10.
Sci Total Environ ; 857(Pt 1): 159328, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36240916

ABSTRACT

A better understanding of r-/K-strategists nitrifiers will help to balance the design and operation of bioprocesses for efficient pollution removal from wastewater. The objectives of study were to investigate the nitrite oxidation biokinetics, biofilm property, microbial community and quorum sensing (QS) of nitrifying biofilm in a continuously flow reactor (CFR) and a sequencing batch reactor (SBR). Results showed that nitrite-oxidizing bacteria were estimated to have a nitrite half saturation constant of 76.23 and 224.73 µM in CFR and SBR, respectively. High-throughput and metagenomic sequencing results showed that Nitrospira and Candidatus Nitrospira defluvii were the dominated nitrite-oxidizing taxa performing nitrite oxidation in both reactors. Nitrifying biofilm developed in CFR and SBR showed obviously different properties. Biofilm in SBR had an obviously higher ratio of polysaccharide and protein in extracellular polymeric substances, and higher thickness than in CFR. Metagenomics and chemical analysis revealed various types of acyl-homoserine lactone (AHL) circuit genes (e.g., luxI, lasI, hdtS) and four types of AHL signaling substances (e.g., C6-HSL, C8-HSL, C10-HSL and 3-oxo-C10-HSL) in nitrifying biofilm. The concentrations of these AHLs in biomass and water phases were obviously higher in SBR than that in CFR. Together, AHLs-based QS might affect the formation of nitrifying biofilm and thus contribute to the different biokinetics of Nitrospira in CFR and SBR. Our insights may reveal the molecular mechanism of Nitrospira for different biokinetics, and indicate the AHL association with Nitrospira adaptation to various conditions.


Subject(s)
Nitrites , Quorum Sensing , Nitrites/metabolism , Biofilms , Nitrification , Acyl-Butyrolactones/metabolism , Bacteria/metabolism
11.
Water Res ; 224: 119029, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36099760

ABSTRACT

A shift from the acetoclastic to the hydrogenotrophic pathway in methanogenesis under ammonia inhibition is a common observation in anaerobic digestion. However, there are still considerable knowledge gaps concerning the differential ammonia tolerance of acetoclastic and hydrogenotrophic methanogens (AMs and HMs), their responses to different ammonia species (NH4+, NH3), and their recoverability after ammonia inhibition. With the successful enrichment of mesophilic AMs and HMs cultures, this study aimed at addressing the above knowledge gaps through batch inhibition/recovery tests and kinetic modeling under varying total ammonia (TAN, 0.2-10 g N/L) and pH (7.0-8.5) conditions. The results showed that the tolerance level of HMs to free ammonia (FAN, IC50=1345 mg N/L) and NH4+ (IC50=6050 mg N/L) was nearly 11 times and 3 times those of AMs (NH3, IC50=123 mg N/L; NH4+, IC50=2133 mg N/L), respectively. Consistent with general belief, the AMs were more impacted by FAN. However, the HMs were more adversely affected by NH4+ when the pH was ≤8.0. A low TAN (1.0-4.0 g N/L) could cause irreversible inhibition of the AMs due to significant cell death, whereas the activity of HMs could be fully or even over recovered from severe ammonia stress (FAN≤ 0.9 g N/L or TAN≤10 g N/L; pH ≤8.0). The different tolerance responses of AMs and HMs might be associated with the cell morphology, multiple energy-converting systems, and Gibbs free energy from substrate-level phosphorylation.


Subject(s)
Ammonia , Euryarchaeota , Ammonia/metabolism , Anaerobiosis , Bioreactors , Euryarchaeota/metabolism , Methane/metabolism
12.
Sci Total Environ ; 850: 158039, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-35981590

ABSTRACT

Autotrophic denitrification using inorganic compounds as electron donors has gained increasing attention in the field of wastewater treatment due to its numerous advantages, such as no need for exogenous organic carbon, low energy input, and low sludge production. Tetracycline (TC), a refractory contaminant, is often found coexisting with nutrients (NO3- and PO43-) in wastewater, which can negatively affect the biological nutrient removal process because of its biological toxicity. However, the performance of autotrophic denitrification under TC stress has rarely been reported. In this study, the effects of TC on autotrophic denitrification with thiosulfate (Na2S2O3) and iron (II) sulfide (FeS) as the electron donors were investigated. With Na2S2O3 as the electron donor, TC slowed down the nitrate removal rate, which decreased from 1.32 to 0.18 d-1, when TC concentration increased from 0 mg/L to 50 mg/L. When TC concentration was higher than 2 mg/L, nitrite reduction was seriously inhibited, leading to nitrite accumulation. With FeS as the electron donor, nitrate removal was much more efficient under TC-stressed conditions, and no distinct nitrite accumulation was observed when the initial TC concentration was as high as 10 mg/L, indicating the effective detoxification of FeS. The detoxification effects in the FeS autotrophic denitrification system mainly resulted from the rapid adsorption of TC by FeS and effective degradation of TC, as proven by a relatively higher living biomass area. This study offers new insights into the response of sulfur-based autotrophic denitrifiers to TC stress and demonstrates that the FeS-based autotrophic denitrification process is a promising technology for the treatment of wastewater containing emerging contaminants and nutrients.


Subject(s)
Denitrification , Sewage , Bioreactors , Carbon , Ferrous Compounds , Iron , Nitrates/metabolism , Nitrites , Nitrogen , Sulfides , Sulfur/chemistry , Tetracycline , Thiosulfates , Wastewater
13.
Bioresour Technol ; 360: 127535, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35779747

ABSTRACT

Anaerobic digestion is a prevalent bioenergy production process relying on a complex network of symbiotic interactions, where the nutrient based cross-feeding is an essential microbial mechanism. Here, the cross-feeding function was assessed by analyzing extracellular polymeric substances-associated amino acids in microbial aggregates collected from 14 lab-scale anaerobic digesters, as well as deciphering their genetically biosynthetic potential by syntrophic bacteria and methanogens. The total concentration of essential amino acids ranged from 1.2 mg/g VSS to 174.0 mg/g VSS. The percentages of glutamic acid (8.5 âˆ¼ 37.6%), lysine (2.7 âˆ¼ 22.6%), alanine (5.6 âˆ¼ 13.2%), and valine (3.0 âˆ¼ 10.4%) to the total amount of detected amino acids were the highest in most samples. Through metagenomics analysis, several investigated syntrophs (i.e., Smithella, Syntrophobacter, Syntrophomonas, and Mesotoga) and methanogens (i.e., Methanothrix and Methanosarcina) were auxotrophies, but the genetic ability of syntrophs and methanogens to synthesize some essential amino acids could be complementary, implying potential cross-feeding partnership.


Subject(s)
Bioreactors , Euryarchaeota , Amino Acids/metabolism , Amino Acids, Essential , Anaerobiosis , Bacteria/genetics , Bacteria/metabolism , Bioreactors/microbiology , Euryarchaeota/metabolism , Methane/metabolism
14.
Sci Data ; 9(1): 317, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710815

ABSTRACT

Wastewater treatment plants (WWTPs) alleviate water pollution but also induce resource consumption and environmental impacts especially greenhouse gas (GHG) emissions. Mitigating GHG emissions of WWTPs can contribute to achieving carbon neutrality in China. But there is still a lack of a high-resolution and time-series GHG emission inventories of WWTPs in China. In this study, we construct a firm-level emission inventory of WWTPs for CH4, N2O and CO2 emissions from different wastewater treatment processes, energy consumption and effluent discharge for the time-period from 2006 to 2019. We aim to develop a transparent, verifiable and comparable WWTP GHG emission inventory to support GHG mitigation of WWTPs in China.

15.
Bioresour Technol ; 355: 127223, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35483533

ABSTRACT

Pyrite is one kind of cost-effective electron donors for nitrate denitrification. In this study, a pyrite-driven autotrophic denitrification biofilter was applied for simultaneous removal of NH4+ and NO3- over the 150-day. The influent NH4+/NO3- ratio (0.3-1.7) had less effect on system performance, while for the hydraulic retention times (HRTs, 24-3 h), the removal percentage of both > 90% and removal loading rates of 52.8 and 59.4 mg N/(L·d) for NH4+ and NO3- removal were obtained at the HRT of 6 h. The 16S rRNA genes analysis showed that Ferritrophicum, Thiobacillus, Candidatus_Brocadia, and unidentified_Nitrospiraceae were predominant. Analyses of nitrogen and sulfur metabolism showed that ammonia was removed by complete nitrification, nitrate was reduced to N2, and sulfide was oxidized to sulfate. Dynamics of pollutants within the reactor and microbial activity showed nitrification/Anammox and pyrite-driven autotrophic denitrification were responsible for the synergistic removal of NH4+/NO3- in this system.


Subject(s)
Denitrification , Nitrates , Ammonia , Autotrophic Processes , Bioreactors , Iron , Nitrogen , Oxidation-Reduction , RNA, Ribosomal, 16S/genetics , Sulfides
16.
Sci Total Environ ; 824: 153836, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35176382

ABSTRACT

Understanding the characteristics of functional organisms is the key to managing and updating biological processes for wastewater treatment. This review, for the first time, systematically characterized two typical types of strategists in wastewater treatment ecosystems via the r/K selection theory and provided novel strategies for selectively enriching microbial community. Functional organisms involved in nitrification (e.g., Nitrosomonas and Nitrosococcus), anammox (Candidatus Brocadia), and methanogenesis (Methanosarcinaceae) are identified as r-strategists with fast growth capacities and low substrate affinities. These r-strategists can achieve high pollutant removal loading rates. On the other hand, other organisms such as Nitrosospira spp., Candidatus Kuenenia, and Methanosaetaceae, are characterized as K-strategists with slow growth rates but high substrate affinities, which can decrease the pollutant concentration to low levels. More importantly, K-strategists may play crucial roles in the biodegradation of recalcitrant organic pollutants. The food-to-microorganism ratio, mass transfer, cell size, and biomass morphology are the key factors determining the selection of r-/K-strategists. These factors can be related with operating parameters (e.g., solids and hydraulic retention time), biomass morphology (biofilm or granules), and operating modes (continuous-flow or sequencing batch), etc., to achieve the efficient acclimation of targeted r-/K-strategists. For practical applications, the concept of substrate flux was put forward to further benefit the selective enrichment of r-/K-strategists, fulfilling effective management and improvement of engineered pollution control bioprocesses. Finally, the future perspectives regarding the development of the r/K selection theory in wastewater treatment processes were discussed.


Subject(s)
Environmental Pollutants , Water Purification , Bioreactors , Ecosystem , Nitrogen/metabolism , Oxidation-Reduction , Sewage , Wastewater
17.
Sci Total Environ ; 807(Pt 1): 150732, 2022 Feb 10.
Article in English | MEDLINE | ID: mdl-34606861

ABSTRACT

Anaerobic digestion is achieved through cooperation among various types of microorganisms, and the regulation of microbial communities is key to achieving stable system operation. In this study, the r/K selection theory was adopted to examine the system performance and microbial characteristics in anaerobic reactors with different operating modes (continuous-flow reactors, CFRs; sequencing batch reactors, SBRs) and sludge retention times (25 and 10 days). Four lab-scale reactors (CFR25d, CFR10d, SBR25d, and SBR10d) were operated. In the cycle reaction, CFR25d achieved the highest methane yield (678.0 mL/L) and methane production rate (140.8 mL/(L·h)); while those in CFR10d were the lowest, which could have been due to an accumulation of volatile fatty acids. CFR could wash out r-strategists efficiently, such as Methanosarcina. CFR25d and CFR10d significantly enriched the K-strategist Geobacter, with the relative abundances of 34.0% and 72.6%, respectively. In addition, the hydrogenotrophic methanogens of Methanolinea and Methanospirillum (K-strategists) dominated in CFR25d and CFR10d. Methanobacterium adapted to the diverse operational conditions, but the slow grower Methanosaeta only accounted for 0.9% in CFR10d. Failure to enrich propionate oxidizers resulted in a functional absence of propionate degradation in the CFRs.


Subject(s)
Bioreactors , Methane , Anaerobiosis , Methanosarcina , Sewage
18.
Environ Sci Pollut Res Int ; 29(13): 19212-19223, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34714478

ABSTRACT

The stimulatory effect of biochar addition on dry anaerobic digestion (AD) has been rarely investigated. In this study, the effects of commonly used biochars (bamboo, rice husk, and pecan shell) on dry co-AD were investigated using mesophilic batch digesters fed with pig manure and food waste as substrates. The results show that the specific methane yield was mildly elevated with the addition of biochars by 7.9%, 9.4%, and 12.0% for bamboo, rice husk, and pecan shell-derived biochar additions, respectively. Biochar did facilitate the degradation of poorly biodegradable organics. In comparison, there was no significant effect on the peak methane production rate by the supplementation of the selected biochars. Among the three mechanisms of enhancing methanogenesis by biochar (buffering, providing supporting surface, and enhancing electron transfer), the first two mechanisms did not function significantly in dry co-AD, while the third mechanism (i.e., enhancing electron transfer) might play an important part in dry AD process. It is recommended that the utilization of biochar for the enhancement of biomethanation in dry AD should be more focused on mono digestion in future studies.


Subject(s)
Manure , Refuse Disposal , Anaerobiosis , Animals , Bioreactors , Charcoal , Digestion , Food , Swine
19.
Sci Total Environ ; 790: 148212, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380271

ABSTRACT

Increasing attention is being paid to the environmental impacts of wastewater treatment plant (WWTP) effluent. In this study, comprehensive environmental impact analyses (EIAs) were performed for the secondary treatment processes, tertiary treatment processes, and entire plants at five full-scale WWTPs in Kunming, China. The EIAs took into account greenhouse gas (GHG) emissions, potential for the effluent to cause eutrophication, ecological risks posed by endocrine disrupting compounds (EDCs) in treated effluent, and the risks posed by heavy metals in excess sludge. A comprehensive assessment toward environmental sustainability was performed using a fuzzy approach. The results indicated that the biological treatment process made the largest contribution (>68% of the total) of the secondary treatment processes to GHG emissions and that electricity consumption made the largest contribution (>64% of the total) of the tertiary treatment processes to GHG emissions. Large numbers of EDCs were removed during the secondary treatment processes, but the potential ecological risks posed by EDCs still require attention. High mercury concentrations were found in excess sludge. The plant that removed the largest proportion of pollutants and produced effluent posing the least ecological risks gave the best comprehensive EIA performance.


Subject(s)
Water Pollutants, Chemical , Water Purification , Environment , Environmental Monitoring , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
20.
Water Environ Res ; 93(9): 1562-1575, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33583099

ABSTRACT

Diverse microbial communities coexist in the partial nitritation-anaerobic ammonium oxidation (PNA) process, in which nitrogen metabolism and information exchange are two important microbial interactions. In the PNA process, the existence of diverse microorganisms including nitrifiers, anammox bacteria, and heterotrophs makes it challenging to achieve a balanced relationship between anaerobic ammonium oxidation bacteria and ammonia oxidizing bacteria. In this study, potential microbial functions in nitrogen conversion and acyl-homoserine lactones (AHLs)-based quorum sensing (QS) in PNA processes were examined. Candidatus_Kuenenia and Nitrosomonas were the key functional bacteria responsible for PNA, while Nitrospira was detected as the dominant nitrite oxidizing bacteria (NOB). Heterotrophs containing nxr might play a similar function to NOB. The AHLs-QS system was an important microbial communication pathway in PNA systems. N-octanoyl-L-homoserine lactone, N-decanoyl homoserine lactone, and N-dodecanoyl homoserine lactone were the main AHLs, which might be synthesized by nitrogen converting microorganisms and heterotrophs. However, only heterotrophs had the potential to sense and degrade AHLs, such as Saccharophagus (sensing) and Leptospira (degradation). These results provide comprehensive information about the possible microbial functions and interactions in the PNA system and clues for system optimization from a microbial perspective. PRACTITIONER POINTS: ●Potential functions of anammox bacteria, nitrifiers, and heterotrophs were revealed. ●Diverse nitrogen conversion and AHLs-quorum sensing related genes were detected. ●Anammox bacteria and AOB played important roles in the AHLs synthesis process. ●Heterotrophs could sense and degrade AHLs during information exchange.


Subject(s)
Microbiota , Quorum Sensing , Bacteria/genetics , Bioreactors , Nitrogen , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...