Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
2.
Sensors (Basel) ; 23(11)2023 May 31.
Article in English | MEDLINE | ID: mdl-37299952

ABSTRACT

Spectral filters are an important part of a multispectral acquisition system, and the selection of suitable filters can improve the spectral recovery accuracy. In this paper, we propose an efficient human color vision-based method to recover spectral reflectance by the optimal filter selection. The original sensitivity curves of the filters are weighted using the LMS cone response function. The area enclosed by the weighted filter spectral sensitivity curves and the coordinate axis is calculated. The area is subtracted before weighting, and the three filters with the smallest reduction in the weighted area are used as the initial filters. The initial filters selected in this way are closest to the sensitivity function of the human visual system. After the three initial filters are combined with the remaining filters one by one, the filter sets are substituted into the spectral recovery model. The best filter sets under L-weighting, M-weighting, and S-weighting are selected according to the custom error score ranking. Finally, the optimal filter set is selected from the three optimal filter sets according to the custom error score ranking. The experimental results demonstrate that the proposed method outperforms existing methods in spectral and colorimetric accuracy, which also has good stability and robustness. This work will be useful for optimizing the spectral sensitivity of a multispectral acquisition system.


Subject(s)
Color Vision , Humans , Colorimetry/methods
3.
Sensors (Basel) ; 23(6)2023 Mar 12.
Article in English | MEDLINE | ID: mdl-36991767

ABSTRACT

The similarity between samples is an important factor for spectral reflectance recovery. The current way of selecting samples after dividing dataset does not take subspace merging into account. An optimized method based on subspace merging for spectral recovery is proposed from single RGB trichromatic values in this paper. Each training sample is equivalent to a separate subspace, and the subspaces are merged according to the Euclidean distance. The merged center point for each subspace is obtained through many iterations, and subspace tracking is used to determine the subspace where each testing sample is located for spectral recovery. After obtaining the center points, these center points are not the actual points in the training samples. The nearest distance principle is used to replace the center points with the point in the training samples, which is the process of representative sample selection. Finally, these representative samples are used for spectral recovery. The effectiveness of the proposed method is tested by comparing it with the existing methods under different illuminants and cameras. Through the experiments, the results show that the proposed method not only shows good results in terms of spectral and colorimetric accuracy, but also in the selection representative samples.

4.
Front Psychol ; 13: 1051286, 2022.
Article in English | MEDLINE | ID: mdl-36506952

ABSTRACT

An optimized method based on dynamic partitional clustering was proposed for the recovery of spectral reflectance from camera response values. The proposed method produced dynamic clustering subspaces using a combination of dynamic and static clustering, which determined each testing sample as a priori clustering center to obtain the clustering subspace by competition. The Euclidean distance weighted and polynomial expansion models in the clustering subspace were adaptively applied to improve the accuracy of spectral recovery. The experimental results demonstrated that the proposed method outperformed existing methods in spectral and colorimetric accuracy and presented the effectiveness and robustness of spectral recovery accuracy under different color spaces.

5.
Stem Cells Int ; 2022: 1252557, 2022.
Article in English | MEDLINE | ID: mdl-35873535

ABSTRACT

Objective: Rapid restoration of corneal epithelium integrity after injury is particularly important for preserving corneal transparency and vision. Mesenchymal stem cells (MSCs) can be taken into account as the promising regenerative therapeutics for improvement of wound healing processes based on the variety of the effective components. The extracellular vesicles form MSCs, especially exosomes, have been considered as important paracrine mediators though transferring microRNAs into recipient cell. This study investigated the mechanism of human umbilical cord MSC-derived small extracellular vesicles (HUMSC-sEVs) on corneal epithelial wound healing. Methods: HUMSC-sEVs were identified by transmission electron microscopy, nanoparticle tracking analysis, and Western blot. Corneal fluorescein staining and histological staining were evaluated in a corneal mechanical wound model. Changes in HCEC proliferation after HUMSC-sEVs or miR-21 mimic treatment were evaluated by CCK-8 and EdU assays, while migration was assessed by in vitro scratch wound assay. Full-length transcriptome sequencing was performed to identify the differentially expressed genes associated with HUMSC-sEVs treatment, followed by validation via real-time PCR and Western blot. Results: The sEVs derived from HUMSCs can significantly promote corneal epithelial cell proliferation, migration in vitro, and corneal epithelial wound healing in vivo. Similar effects were obtained after miR-21 transfection, while the beneficial effects of HUMSC-sEVs were partially negated by miR-21 knockdown. Results also show that the benefits are associated with decreased PTEN level and activated the PI3K/Akt signaling pathway in HCECs. Conclusion: HUMSC-sEVs could enhance the recovery of corneal epithelial wounds though restraining PTEN by transferring miR-21 and may represent a promising novel therapeutic agent for corneal wound repair.

6.
Cell Biol Toxicol ; 37(1): 65-84, 2021 02.
Article in English | MEDLINE | ID: mdl-32623698

ABSTRACT

Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) associated with non-alcoholic fatty liver disease (NAFLD). The effects of gestational BPA exposure on hepatic lipid accumulation in offspring are not fully understood. Here, we investigate the sex-dependent effects of gestational BPA exposure on hepatic lipid and glucose metabolism in the offspring of mice to reveal the mechanisms underlying gestational BPA exposure-associated NAFLD. Pregnant mice were administered gavage with or without 1 µg kg-1 day-1 BPA at embryonic day 7.5 (E7.5)-E16.5. Hepatic glucose and lipid metabolism were evaluated in these models. Both male and female offspring mice exhibited hepatic fatty liver after BPA treatment. Lipid accumulation and dysfunction of glucose metabolism were observed in male offspring. We revealed abnormal expression of lipid regulators in the liver and that inhibition of peroxisome proliferator-activated receptor γ (PPARγ) repressed hepatic lipid accumulation induced by gestational BPA exposure. We also found a sex-dependent decrease of hepatocyte nuclear factor 1b (HNF1b) expression in male offspring. The transcriptional repression of PPARγ by HNF1b was confirmed in L02 cells. Downregulation of HNF1b, upregulation of PPARγ, and subsequent upregulation of hepatic lipid accumulation were essential for NAFLD development in male offspring gestationally exposed to BPA as well as BPA-exposed adult male mice. Dysregulation of the HNF1b/PPARγ pathway may be involved in gestational BPA exposure-induced NAFLD in male offspring. These data provide new insights into the mechanism of gestational BPA exposure-associated sex-dependent glucose and lipid metabolic dysfunction. Graphical abstract Schematic of the mechanism of gestational BPA exposure-induced glucose and lipid metabolic dysfunction.


Subject(s)
Benzhydryl Compounds/toxicity , Fatty Liver/chemically induced , Hepatocyte Nuclear Factor 1-beta/antagonists & inhibitors , PPAR gamma/metabolism , Phenols/toxicity , Prenatal Exposure Delayed Effects/pathology , Up-Regulation , Animals , Down-Regulation/drug effects , Estrogens/metabolism , Female , Gene Expression Regulation/drug effects , Glucose/metabolism , Hepatocyte Nuclear Factor 1-beta/metabolism , Lipid Metabolism/drug effects , Lipid Metabolism/genetics , Liver/drug effects , Liver/pathology , Liver/ultrastructure , Male , Mice, Inbred C57BL , Pregnancy , Transcription, Genetic/drug effects , Triglycerides/metabolism , Up-Regulation/drug effects
7.
Sci Total Environ ; 720: 137597, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32143051

ABSTRACT

Polychlorinated biphenyls (PCBs) exposure is closely associated with the prevalence of metabolic diseases, including fatty liver and dyslipidemia. Emerging literature suggests that disturbance of gut microbiota is related to PCB126-induced metabolic disorders. However, the causal role of dysbiosis in PCB126-induced fatty liver is still unknown. To clarify the role of the gut microbiome in the detoxification of PCB126 in intestine or PCB126-induced toxicity in liver, mice were administrated with drinking water containing antibiotics (ampicillin, vancomycin, neomycin, and metronidazole) or Inulin. We showed that PCB126 resulted in significant hepatic lipid accumulation, inflammation, and fibrosis. PCB126, Antibiotics, and Inulin significantly affected the structure and shifted community membership of gut microbiome. 7 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways at level 2 and 39 KEGG pathways at level 3 were significantly affected. Antibiotics alleviated PCB126-induced fibrosis in the liver but increased inflammation. Inulin treatment ameliorated both inflammation and fibrosis in the liver of PCB126-treated mice. Neither Antibiotics nor Inulin had significant effect on PCB126-induced hepatic steatosis. The more specific intervention of gut microbiota is needed to alleviate PCB126-induced fatty liver. These data demonstrate that homeostasis of gut microbiota is critical for the defense against PCB126 toxicity and dysbiosis plays a fundamental role in the development of inflammation and fibrosis in liver of PCB126-treated mice.


Subject(s)
Gastrointestinal Microbiome , Animals , Dysbiosis , Homeostasis , Liver , Mice , Polychlorinated Biphenyls
8.
Opt Express ; 26(18): 23602-23612, 2018 Sep 03.
Article in English | MEDLINE | ID: mdl-30184859

ABSTRACT

A non-homogeneous composite guided-mode resonant (GMR) filter structure is proposed that avoids the multi-mode resonance effect and increases resonant wavelength tuning range. The composite filter structure is engineered using a combination of a varied-line-spacing (VLS) grating layer with a wedge-shaped waveguide layer. The grating is fabricated by holographic interference lithography (IL), while the wedge-shaped layer is fabricated using masked ion beam etching (MIBE) technology. The resonant wavelength has been observed to vary as a function of the spatial position on the structure. In the fabricated structure, over a length of 30 mm, the grating period increment is measured to be 149.2 nm, whereas the increment of the waveguide film thickness is approximately 100 nm. Experimental results show that a primary reflectance peak is achieved spanning a wavelength range of 805.8-1119.0 nm. The device is designed using the rigorous coupled-wave analysis (RCWA) method, and the proposed device is toward the practical application of GMR filters.

9.
Free Radic Biol Med ; 124: 122-134, 2018 08 20.
Article in English | MEDLINE | ID: mdl-29879443

ABSTRACT

Polychlorinated biphenyls (PCBs) exposure is closely associated with obesity and diabetes. However, the mechanism of PCBs-induced adiposity and insulin resistance is not clear and the intervention is limited. We have found that oleanolic acid (OA) is a natural triterpenoid, possessing antioxidant and anti-diabetic activity, and hepatocyte nuclear factor 1b (HNF1b) is an important regulator of glucose and lipid metabolism. The present study aimed to investigate the effect of OA on Aroclor 1254-induced adiposity and insulin resistance and explore the possible involvement of HNF1b. We showed that OA significantly attenuated Aroclor 1254-induced insulin resistance and abnormal changes of glucose and lipid parameters. OA inhibited the increase of adipose weight and adipocyte size in Aroclor 1254-treated mice and repressed adipocyte differentiation in vitro. In addition, OA markedly inhibited Aroclor 1254-induced increase of ROS, oxidant products, NOX4 expression, decrease of SOD1, SOD2, GCLC, GCLM and Gpx1 expression, and increase of PPARγ signaling. Aroclor 1254 resulted in a decrease of HNF1b expression in adipose of mice and adipocytes, which was inhibited by OA. Upregulation of HNF1b blocked Aroclor 1254-induced oxidative stress, adipocyte differentiation and insulin resistance. Downregulation of HNF1b inhibited OA-induced protective effects against Aroclor 1254-associated oxidative stress, adipocyte differentiation and insulin resistance. The antioxidant Vitamin C reduced Aroclor 1254-induced ROS generation in vitro, but had no significant effect on HNF1b expression, oxidative stress and metabolic dysfunction in vivo. OA could inhibit PCBs mixture-induced oxidative injury and glucose/lipid metabolic dysfunction via HNF1b-mediated regulation of redox homeostasis. Our data suggest that HNF1b is a new on/off switch of redox homeostasis and OA-stimulated HNF1b-endogenous antioxidant activity is a potential option for the intervention of PCBs exposure-related adiposity and insulin resistance.


Subject(s)
Adiposity/drug effects , Hepatocyte Nuclear Factor 1-beta/metabolism , Insulin Resistance , Obesity/drug therapy , Oleanolic Acid/pharmacology , PPAR gamma/metabolism , 3T3-L1 Cells , Animals , Antithyroid Agents/toxicity , Cell Differentiation , Diet, High-Fat/adverse effects , Gene Expression Regulation/drug effects , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/metabolism , Obesity/pathology , Oxidation-Reduction , Signal Transduction
10.
Biomed Pharmacother ; 104: 315-324, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29775900

ABSTRACT

The worldwide prevalence of diabetes and associated metabolic diseases has dramatically increased. Pharmacological treatment of diabetes is still limited. Hordenine (HOR), a phenethylamine alkaloid, is a natural constituent in many plants. The present study was designed to explore the possible anti-diabetic effect of HOR in streptozotocin (STZ)-induced diabetic mice. Combined treatment of HOR and insulin significantly reduced fasting and postprandial blood glucose level in diabetic mice. HOR and insulin did not show evident protective effect against structural and functional injuries of pancreas. Renal histological and functional injuries were significantly improved by HOR or insulin treatment. Moreover, combined treatment of HOR and insulin resulted in a more significant amelioration of renal histological and functional injuries in diabetic mice. HOR induced a decrease of renal IL-1α/ß and IL-6 expression, and a reduction of Col1α1 and MMP9 expression and PAS-stained mesangial expansion in glomeruli of diabetic mice. In diabetic mice, HOR significantly decreased Nrf2 expression and increased hnRNPF and hnRNPK expression in kidney. Moreover, HOR showed a synergistic effect with insulin on the expression of these regulators. Renal ROS level and TBARS content in diabetic mice were decreased by HOR. The reduction of renal expression of antioxidant enzymes in diabetic mice was inhibited by HOR and insulin. Furthermore, HOR and insulin function synergistically to play an antioxidant role against oxidative injury in diabetic nephropathy. In conclusion, to the best of our knowledge, we, for the first time, found the anti-diabetic, anti-inflammatory, and anti-fibrotic role of HOR in combination with insulin. HOR functions synergistically with insulin and prevents diabetic nephropathy. However, the molecular mechanism of the synergistic effect of HOR and insulin needs to be elucidated.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Hyperglycemia/drug therapy , Protective Agents/pharmacology , Streptozocin/pharmacology , Tyramine/analogs & derivatives , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/metabolism , Fibrosis/drug therapy , Fibrosis/metabolism , Hyperglycemia/metabolism , Insulin/metabolism , Kidney/drug effects , Kidney/metabolism , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Pancreas/drug effects , Pancreas/metabolism , Tyramine/pharmacology
11.
PLoS One ; 12(10): e0186040, 2017.
Article in English | MEDLINE | ID: mdl-29023475

ABSTRACT

Isaria cateniannulata is a very important and virulent entomopathogenic fungus that infects many insect pest species. Although I. cateniannulata is commonly exposed to extreme environmental temperature conditions, little is known about its molecular response mechanism to temperature stress. Here, we sequenced and de novo assembled the transcriptome of I. cateniannulata in response to high and low temperature stresses using Illumina RNA-Seq technology. Our assembly encompassed 17,514 unigenes (mean length = 1,197 bp), in which 11,445 unigenes (65.34%) showed significant similarities to known sequences in NCBI non-redundant protein sequences (Nr) database. Using digital gene expression analysis, 4,483 differentially expressed genes (DEGs) were identified after heat treatment, including 2,905 up-regulated genes and 1,578 down-regulated genes. Under cold stress, 1,927 DEGs were identified, including 1,245 up-regulated genes and 682 down-regulated genes. The expression patterns of 18 randomly selected candidate DEGs resulting from quantitative real-time PCR (qRT-PCR) were consistent with their transcriptome analysis results. Although DEGs were involved in many pathways, we focused on the genes that were involved in endocytosis: In heat stress, the pathway of clathrin-dependent endocytosis (CDE) was active; however at low temperature stresses, the pathway of clathrin-independent endocytosis (CIE) was active. Besides, four categories of DEGs acting as temperature sensors were observed, including cell-wall-major-components-metabolism-related (CWMCMR) genes, heat shock protein (Hsp) genes, intracellular-compatible-solutes-metabolism-related (ICSMR) genes and glutathione S-transferase (GST). These results enhance our understanding of the molecular mechanisms of I. cateniannulata in response to temperature stresses and provide a valuable resource for the future investigations.


Subject(s)
Cold-Shock Response/genetics , Gene Expression Regulation, Fungal , Heat-Shock Response/genetics , Hypocreales/physiology , Gene Expression Profiling , Gene Ontology , Hypocreales/genetics , Reverse Transcriptase Polymerase Chain Reaction
12.
Free Radic Biol Med ; 113: 71-83, 2017 12.
Article in English | MEDLINE | ID: mdl-28942246

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disorder that is closely associated with insulin resistance and type 2 diabetes. Previous studies have suggested that hepatocyte nuclear factor 1b (HNF1b) ameliorates insulin resistance. However, the role of HNF1b in the regulation of lipid metabolism and hepatic steatosis remains poorly understood. We found that HNF1b expression was decreased in steatotic livers. We injected mice with lentivirus (LV) expressing HNF1b shRNA to generate mice with hepatic knockdown of HNF1b. We also injected high fat (HF) diet-induced obese and db/db diabetic mice with LV expressing HNF1b to overexpress HNF1b. Knockdown of HNF1b increased hepatic lipid contents and induced insulin resistance in mice and in hepatocytes. Knockdown of HNF1b worsened HF diet-induced increases in hepatic lipid contents, liver injury and insulin resistance in mice and PA-induced lipid accumulation and impaired insulin signaling in hepatocytes. Moreover, overexpression of HNF1b alleviated HF diet-induced increases in hepatic lipid content and insulin resistance in mice. Knockdown of HNF1b increased expression of genes associated with lipogenensis and endoplasmic reticulum (ER) stress. DPP4 and NOX1 expression was increased by knockdown of HNF1b and HNF1b directly bound with the promoters of DPP4 and NOX1. Overexpression of DPP4 or NOX1 was associated with an increase in lipid droplets in hepatocytes and decreased expression of DPP4 or NOX1 suppressed the effects of knockdown of HNF1b knockdown on triglyceride (TG) formation and insulin signaling. Knockdown of HNF1b increased superoxide level and decreased glutathione content, which was inhibited by downregulation of DPP4 and NOX1. N-acetylcysteine (NAC) suppressed HNF1b knockdown-induced ER stress, TG formation and insulin resistance. Palmitic acid (PA) decreased HNF1b expression which was inhibited by NAC. Taken together, these studies demonstrate that HNF1b plays an essential role in controlling hepatic TG homeostasis and insulin sensitivity by regulating DPP4/NOX1mediated generation of superoxide.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Hepatocyte Nuclear Factor 1-beta/metabolism , Liver/metabolism , NADPH Oxidase 1/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Superoxides/metabolism , Animals , Diabetes Mellitus, Experimental/metabolism , Diet, High-Fat , Disease Models, Animal , Endoplasmic Reticulum Stress , Insulin Resistance , Liver/enzymology , Male , Mice , Non-alcoholic Fatty Liver Disease/enzymology , Non-alcoholic Fatty Liver Disease/etiology , Obesity/metabolism
13.
J Chem Ecol ; 43(6): 557-562, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28601939

ABSTRACT

Insect cuticular hydrocarbons (CHCs) play important roles in chemical communication, as well as having ecological and physiological roles. The use of CHCs for mate recognition has been shown in many insect genera, but little is known about their use in the tea weevil Myllocerinus aurolineatus. Here, we provide evidence that CHCs on the surface of sexually mature M. aurolineatus females act as contact sex pheromones, facilitating mate recognition and eliciting copulatory behavior in male weevils. Using gas chromatography-mass spectrometry, we identify n-pentacosane and n-heptacosane as two potential contact pheromone components. Results from arena bioassays showed that n-pentacosane is a component of a contact pheromone of M. aurolineatus. Further results from the Y-tube olfactometer bioassays showed that n-pentacosane also acts as a volatile attractant. Our results greatly improve our understanding of the chemical ecology of M. aurolineatus.


Subject(s)
Alkanes/chemistry , Alkanes/metabolism , Sex Attractants/chemistry , Sex Attractants/physiology , Weevils/chemistry , Weevils/physiology , Animals , Female , Gas Chromatography-Mass Spectrometry , Male , Olfactometry , Sexual Behavior, Animal , Volatile Organic Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...