Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
Waste Manag ; 137: 100-109, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34749178

ABSTRACT

The reducing gases produced and NO reduction by sewage sludge combustion were investigated in a self-made cement precalciner. The dual role of O2 concentration (0-5 vol%) in the production characteristics of reducing gases and the reduction efficiency of NO were evaluated experimentally. TG-FTIR analysis demonstrated that the key reducing gaseous species produced by sewage sludge combustion were HCN, NH3, CO, and CH4. And experiments demonstrated that O2 concentration had pronounced effects on NH3 distribution, the maximum production rate was obtained at an O2 concentration of 3 vol%. Meanwhile, the reducing gases NH3 and CO were the key species for NO reduction in the cement precalciner, and the reduction efficiency of NO, when reduced by NH3, increased with an increase in O2 concentration, while the reduction performance of NO by CO was limited by O2 concentration. Therefore, O2 concentration greatly influences NO reduction efficiency by sewage sludge combustion; the maximum NO reduction efficiency was 61.67% at an O2 concentration of 3 vol%. The difference in NO reduction by sewage sludge combustion under different O2 concentrations was primarily attributed to NH3 production rate and NO reduction by NH3 and CO, which is greatly affected by O2 concentration. Sewage sludge combustion can result in NO reduction in the cement kiln flue gas and resource utilisation of sewage sludge.


Subject(s)
Gases , Sewage
2.
ACS Omega ; 5(11): 5844-5853, 2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32226864

ABSTRACT

The effects of ozone concentration, NaOH concentration, type and concentration of additives, initial pH, temperature, and NO and SO2 concentration on simultaneous removal of NO and SO2 were studied through ozone oxidation combined with wet absorption. Results indicated that ozone concentration and the type and concentration of additives had the most significant effect on NO removal. The optimal ozone concentration was 250 ppm (NO/NO2 = 1), and the best additive was KMnO4. The removal efficiency of NO x was as high as 97.86% when NO/NO2 = 1, and the concentration of KMnO4 was 0.025 mol/L. Considering economic and other factors, the KMnO4 concentration was selected to be 0.006 mol/L. At this time, the removal efficiencies of NO x and SO2 were 81.35 and 100%, respectively. This method has potential application prospects for simultaneous removal of SO2 and NO in the industrial flue gas.

4.
RSC Adv ; 9(40): 22863-22874, 2019 07 23.
Article in English | MEDLINE | ID: mdl-35514465

ABSTRACT

An experimental study on the effects of CO2 concentration on the release of reducing gases and the NO reduction efficiency by sludge reburning was carried out in a pilot scale cement precalciner. The results indicate that sludge reburning shows an ideal NO reduction activity. The best NO reduction efficiency of 54% is reached when the CO2 concentration is 25 vol%. Characteristic analysis of the sludge shows that the main types of reducing gases generated by sludge reburning are HCN, NH3, CO and CH4. Among them, CO2 concentration plays a crucial role in the release of HCN, CO and CH4. The mechanistic study indicates that NO reduction is dominated by homogeneous reduction during the sludge reburning process, in particular the reducing gases of CO and NH3 have significant influences on the NO reduction. Meanwhile, the effect of CO2 concentration on NO reduction is mainly due to the difference in CO release. The results of the present study not only provide insight into the mechanism of NO reduction by sludge reburning, but could also contribute to the development of NO X removal technology in the cement industry.

5.
Huan Jing Ke Xue ; 33(7): 2503-9, 2012 Jul.
Article in Chinese | MEDLINE | ID: mdl-23002634

ABSTRACT

In order to clarify the effects of soil properties on the stabilization process of the cadmium (Cd) added, 11 different soils were collected and incubated under a moisture content of 65%-70% at 25 degrees C. The changes of available Cd contents with incubation time (in 360 days) in Cd and Cd-Pb contaminated treatments were determined. The stabilization process was simulated using dynamic equations. The results showed that after 1.0 mg x kg(-1) Cd or 500 mg x kg(-1) Pb + 1.0 mg x kg(-1) Cd were added into the soil, the available Cd content decreased rapidly during the first 15 days, and then the decreasing rate slowed down, with an equilibrium content reached after 60 days' incubation. In Cd-Pb contaminated soils, the presence of Pb increased the content of available Cd. The stabilization process of Cd could be well described by the second-order equation and the first order exponential decay; meanwhile, dynamic parameters including equilibrium content and stabilization velocity were used to characterize the stabilization process of Cd. These two key dynamic parameters were significantly affected by soil properties. Correlation analysis and stepwise regression suggested that high pH and high cation exchange capacity (CEC) significantly retarded the availability of Cd. High pH had the paramount effect on the equilibrium content. The stabilization velocity of Cd was influenced by the soil texture. It took shorter time for Cd to get stabilized in sandy soil than in the clay.


Subject(s)
Cadmium/analysis , Lead/analysis , Soil Pollutants/analysis , Soil/analysis , Aluminum Silicates/analysis , Clay , Environmental Monitoring , Environmental Restoration and Remediation , Hydrogen-Ion Concentration , Regression Analysis , Silicon Dioxide/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...