Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Chem Res Toxicol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837948

ABSTRACT

Hydroquinone(HQ) is a widely used industrial raw material and is a topical lightening product found in over-the-counter products. However, inappropriate exposure to HQ can pose certain health hazards. This study aims to explore the mechanisms of DNA damage and cell apoptosis caused by HQ, with a focus on whether HQ activates the nuclear factor-κB (NF-κB) pathway to participate in this process and to investigate the correlation between the NF-κB pathway activation and poly(ADP-ribose) polymerase 1(PARP1). Through various experimental techniques, such as DNA damage detection, cell apoptosis assessment, cell survival rate analysis, immunofluorescence, and nuclear-cytoplasmic separation, the cytotoxic effects of HQ were verified, and the activation of the NF-κB pathway was observed. Simultaneously, the relationship between the NF-κB pathway and PARP1 was verified by shRNA interference experiments. The results showed that HQ could significantly activate the NF-κB pathway, leading to a decreased cell survival rate, increased DNA damage, and cell apoptosis. Inhibiting the NF-κB pathway could significantly reduce HQ-induced DNA damage and cell apoptosis and restore cell proliferation and survival rate. shRNA interference experiments further indicated that the activation of the NF-κB pathway was regulated by PARP1. This study confirmed the important role of the NF-κB pathway in HQ-induced DNA damage and cell apoptosis and revealed that the activation of the NF-κB pathway was mediated by PARP1. This research provides important clues for a deeper understanding of the toxic mechanism of HQ.

2.
Small ; : e2401497, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693067

ABSTRACT

Manganese-based lithium-rich layered oxides (Mn-LLOs) are promising candidate cathode materials for lithium-ion batteries, however, the severe voltage decay during cycling is the most concern for their practical applications. Herein, an Mn-based composite nanostructure constructed Li2MnO3 (LMO@Li2MnO3) is developed via an ultrathin amorphous functional oxide LixMnOy coating at the grain surface. Due to the thin and universal LMO amorphous surface layer etched from the lithiation process by the high-concentration alkaline solution, the structural and interfacial stability of Li2MnO3 are enhanced apparently, showing the significantly improved voltage maintenance, cycle stability, and energy density. In particular, the LMO@Li2MnO3 cathode exhibits zero voltage decay over 200 cycles. Combining with ex situ spectroscopic and microscopic techniques, the Mn2+/4+ coexisted behavior of the amorphous LMO is revealed, which enables the stable electrochemistry of Li2MnO3. This work provides new possible routes for suppressing the voltage decay of Mn-LLOs by modifying with the composite functional unit construction.

3.
Water Res ; 252: 121213, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38306752

ABSTRACT

The occurrence of large Microcystis biomass in brackish waters is primarily caused by its downward transportation from the upstream freshwater lakes and reservoirs through rivers rather than due to in situ bloom formation. Factors that determine the survival of freshwater cyanobacteria in brackish waters have not been well investigated. Here, we studied the spatiotemporal variability of inorganic nitrogen in an upstream lake and conducted laboratory and in-situ experiments to assess the role of nitrogen availability on the salt tolerance of Microcystis and the release of microcystins. A series of field experiments were carried out during bloom seasons to evaluate the salt tolerance of natural Microcystis colonies. The salt tolerance threshold varied from 7 to 17 and showed a positive relationship with intracellular carbohydrate content and a negative relationship with nitrogen availability in water. In August when upstream nitrogen availability was lower, the Microcystis colonies could maintain their biomass even after a sudden increase in salinity from 4 to 10. Laboratory-cultivated Microcystis that accumulated higher carbohydrate content at lower nitrogen availability showed better cell survival at higher salinity. The sharp release of microcystins into the surrounding water occurred when salinity exceeded the salt tolerance threshold of the Microcystis. Thus, Microcystis with higher salt tolerance can accumulate more toxins in cells. The obtained results suggest that the cell survival and toxin concentration in brackish waters depend on the physiological properties of Microcystis formed in the upstream waters. Thus, the life history of Microcystis in upstream waters could have a significant impact on its salt tolerance in downstream brackish waters, where the ecological risk of the salt-tolerant Microcystis requires special and careful management in summer at low nitrogen availability.


Subject(s)
Microcystis , Microcystis/physiology , Microcystins , Salt Tolerance , Nitrogen , Lakes/microbiology , Saline Waters , Water , Carbohydrates
4.
Chem Biol Interact ; 392: 110923, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38382706

ABSTRACT

Aflatoxin B1 (AFB1) is the most toxic mycotoxin and a proven human carcinogen that requires metabolic activation, known by cytochrome P450 (CYP) 1A2 and 3A4. Previous evidence showed that AFB1 is activated by human recombinant CYP1A1 expressed in budding yeast. Yet, the toxicity, in particular the genotoxicity of the reactive metabolites formed from AFB1 remains unclear. Humans could be exposed to both AFB1 and benzo(a)pyrene (BaP) simultaneously, thus we were interested in their combined genotoxic effects subsequent to metabolic activation by CYP1A1. In this study, molecular docking of AFB1 to human CYP1A1 indicated that AFB1 is valid as a substrate. In the incubations with AFB1 in human CYP1A1-expressed microsomes, AFM1 as a marking metabolite of AFB1 was detected. Moreover, AFB1 induced micronucleus formation in a Chinese hamster V79-derived cell line and in a human lung epithelial BEAS-2B cell line, both expressing recombinant human CYP1A1, V79-hCYP1A1 and 2B-hCYP1A1 cells, respectively. Immunofluorescence of centromere protein B stained micronuclei was dominant in AFB1-treated BEAS-2B cells exposed to AFB1, suggesting an aneugenic effect. Moreover, AFB1 elevated the levels of ROS, 8-OHdG, AFB1-DNA adduct, and DNA breaks in 2B-hCYP1A1 cells, compared with those in the parental BEAS-2B cells. Meanwhile, AFB1 increased CYP1A1, RAD51, and γ-H2AX protein levels in 2B-hCYP1A1 cells, which were attenuated by the CYP1A1 inhibitor bergamottin. Co-exposure of AFB1 with BaP increased 8-OHdG, RAD51, and γ-H2AX levels (indicating DNA damage). In conclusion, AFB1 could be activated by human CYP1A1 for potent aneugenicity, which may be further enhanced by co-exposure to BaP.


Subject(s)
Cytochrome P-450 CYP1A1 , Cytochrome P-450 Enzyme System , Animals , Humans , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 Enzyme System/metabolism , Aflatoxin B1/toxicity , Aflatoxin B1/metabolism , Benzo(a)pyrene/toxicity , Aneugens , Molecular Docking Simulation , Mammals/metabolism
5.
Environ Sci Pollut Res Int ; 31(11): 16188-16205, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38329669

ABSTRACT

Phytoremediation is a cost-effective and eco-friendly plant-based approach promising technique to repair heavy metal-contaminated soils. However, a significant quantity of plant residues needs to be properly treated and utilized. Pyrolysis is an effective technology for converting residues to biochar, which can solve the problem and avoid secondary contamination. This paper reviews the generation, and physicochemical properties of biochar from phytoremediation residues, and its application in soil improvement, environmental remediation, and carbon sequestration. In spite of this, it is important to be aware of the potential toxicity of heavy metals in biochar and the environmental risks of biochar before applying it to practical applications. Future challenges in the production and application of residue-derived biochar include the rational selection of pyrolysis parameters and proper handling of potentially hazardous components in the biochar.


Subject(s)
Environmental Restoration and Remediation , Metals, Heavy , Soil Pollutants , Biodegradation, Environmental , Soil Pollutants/analysis , Charcoal/chemistry , Metals, Heavy/analysis , Soil/chemistry
6.
Chem Biol Interact ; 387: 110809, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38006958

ABSTRACT

BACKGROUND: Hydroquinone (HQ), a major metabolite of benzene and known hematotoxic carcinogen. MicroRNA 1246 (miR-1246), an oncogene, regulates target genes in carcinogenesis including leukemia. This study investigates the impact of exosomal derived miR-1246 from HQ-transformed (HQ19) cells on cell-to-cell communication in recipient TK6 cells. METHODS: RNA sequencing was used to identify differentially expressed exosomal miRNAs in HQ19 cells and its phosphate buffered solution control cells (PBS19), which were then confirmed using qRT-PCR. The impact of exosomal miR-1246 derived from HQ-transformed cells on cell cycle distribution was investigated in recipient TK6 cells. RESULTS: RNA sequencing analysis revealed that 34 exosomal miRNAs were upregulated and 158 miRNAs were downregulated in HQ19 cells compared with PBS19 cells. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses predicted that their targets are enriched in cancer development-related pathways, such as MAPK signaling, microRNAs in cancer, apoptosis, PI3K-Akt signaling, cell cycle, Ras signaling, and Chronic myeloid leukemia. Eleven miRNAs were confirmed to have differential expression through qRT-PCR, with 6 upregulated (miR-140-3p, miR-551b-3p, miR-7-5p, miR-1290, miR-92a-3p, and miR-1246) and 5 downregulated (miR-183-5p, miR-26a-5p, miR-30c-5p, miR-205-5p, and miR-99b-3p). Among these, miR-1246 exhibited the highest expression level. HQ exposure resulted in a concentration-dependent increase in miR-1246 levels and decrease Cyclin G2 (CCNG2) levels in TK6 cells. Similarly, exosomes from HQ19 exhibited similar effects as HQ exposure. Dual luciferase reporter gene assays indicated that miR-1246 could band to CCNG2. After HQ exposure, exosomal miR-1246 induced cell cycle arrest at the S phase, elevating the expression of genes like pRb, E2F1, and Cyclin D1 associated with S phase checkpoint. However, silencing miR-1246 caused G2/M-phase arrest. CONCLUSION: HQ-transformed cells' exosomal miR-1246 targets CCNG2, regulating TK6 cell cycle arrest, highlighting its potential as a biomarker for HQ-induced malignant transformation.


Subject(s)
Cyclin G2 , MicroRNAs , Humans , Cyclin G2/genetics , Cyclin G2/metabolism , S Phase , Hydroquinones/toxicity , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Transformation, Neoplastic
7.
Environ Toxicol ; 38(8): 1874-1890, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37148176

ABSTRACT

Hydroquinone (HQ), one of the main active metabolites of benzene in vivo, 7is commonly used as a surrogate for benzene in in vitro studies and has been shown to be cytotoxic. The aim of this study was to investigate the role of endoplasmic reticulum stress (ERS) in HQ-induced autophagy and apoptosis in human lymphoblastoid cells (TK6) and how activating transcription factor 6 (ATF-6) is involved. We treated TK6 cells with HQ to establish a cytotoxicity model and found that HQ induced cellular ERS, autophagy and apoptosis by Western blot, flow cytometry and transmission electron microscopy. In addition, inhibition of both reactive oxygen species (ROS) and ERS inhibited cellular autophagy and apoptosis, suggesting that ERS may be induced by ROS, which in turn affects autophagy and apoptosis. Our study also found that HQ could inhibit ATF6 expression and mTOR activation. Knockdown of ATF6 enhanced autophagy and apoptosis levels and further inhibited mTOR activation; activation of ATF6 by AA147 enhanced cellular activity, suggesting that ATF6 may affect cellular autophagy and apoptosis through mTOR. In conclusion, our data suggest that ROS mediated ERS may promote autophagy and apoptosis by inhibiting ATF6-mTOR pathway after HQ treatment of TK6 cells.


Subject(s)
Activating Transcription Factor 6 , Hydroquinones , Humans , Hydroquinones/toxicity , Activating Transcription Factor 6/metabolism , Reactive Oxygen Species/metabolism , Benzene , TOR Serine-Threonine Kinases/metabolism , Endoplasmic Reticulum Stress , Apoptosis/physiology , Autophagy
8.
Ecotoxicol Environ Saf ; 255: 114786, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36934544

ABSTRACT

Long non-coding RNAs (lncRNAs) have been shown to play a critical role in the damage caused to the body by environmental exogenous chemicals; however, few studies have explored their effects during exposure to benzene and its metabolite, hydroquinone (HQ). An emerging lncRNA, LINC01480, was found to be associated with the immune microenvironment of some cancers, but its specific function remains unknown. Therefore, this study aimed to investigate the role of LINC01480 in HQ-induced apoptosis. The biological function of LINC01480 was investigated through gain-of-function and loss-of-function experiments. Mechanically, nuclear-cytoplasmic fractionation experiment, chromatin immunoprecipitation (ChIP), dual-luciferase reporter assay, and rescue experiments were performed. In this study, when TK6 cells were treated with HQ (0, 5, 10, and 20 µM) for 12, 24, 48, and 72 h, the expression of LINC01480 was increased in a dose-dependent manner. Meanwhile, the phosphorylation levels of PI3K and AKT decreased, and apoptosis increased. As compared to the control group, HQ-induced apoptosis was significantly reduced, and the relative survival rate of TK6 cells increased after silencing LINC01480, while overexpression of LINC01480 further sensitized TK6 cells to HQ-induced apoptotic cell death. LINC01480 negatively regulated the PI3K/AKT pathway in TK6 cells, and the apoptosis-inhibiting effect of LINC01480 silencing was reversed after inhibition of the PI3K/AKT pathway. In addition, ChIP and the dual-luciferase reporter assays showed that the transcription factor Foxo3a promoted LINC01480 transcription by directly binding to the promoter regions - 149 to - 138 of LINC01480. Moreover, short-term HQ exposure promoted the expression of Foxo3a. From these findings, we can conclude that LINC01480 is activated by Foxo3a, and promotes HQ-induced apoptosis by inhibiting the PI3K/AKT pathway, suggesting that LINC01480 might become a possible target for therapeutic intervention of HQ-induced toxicity.


Subject(s)
RNA, Long Noncoding , Apoptosis , Hydroquinones/toxicity , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/pharmacology
9.
Sci Total Environ ; 879: 163112, 2023 Jun 25.
Article in English | MEDLINE | ID: mdl-36966825

ABSTRACT

Wetlands (rivers, lakes, swamps, etc.) are biodiversity hotspots, providing habitats for biota on the earth. In recent years, wetlands have been significantly affected by human activities and climate change, and wetland ecosystems have become one of the most threatened ecosystems in the world. There have been many studies on the impact of human activities and climate change on wetland landscapes, but there is still a lack of relevant reviews. This article summarizes the research on the impact of global human activities and climate change on wetland landscape patterns (vegetation distribution, etc.) from 1996 to 2021. Human activities such as dam construction, urbanization, and grazing will significantly affect the wetland landscape. Generally, dam construction and urbanization are generally believed to harm wetland vegetation, but appropriate human behaviors such as tillage benefit wetland plants' growth on reclaimed land. Prescribed fires in non-inundation periods are one of the ways to increase the vegetation coverage and diversity of wetlands. In addition, some ecological restoration projects have a positive impact on wetland vegetation (quantity, richness, etc.). Under climatic conditions, extreme floods and droughts are likely to change the wetland landscape pattern, and excessively high and low water levels will restrict plants. At the same time, the invasion of alien vegetation will inhibit the growth of native vegetation in the wetland. In an environment of global warming, rising temperatures may be a "double-edged sword" for alpine and higher latitude wetland plants. This review will help researchers better understand the impact of human activities and climate change on wetland landscape patterns and suggests avenues for future studies.


Subject(s)
Ecosystem , Wetlands , Humans , Climate Change , Biodiversity , Human Activities
10.
Environ Toxicol ; 38(6): 1420-1430, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36988267

ABSTRACT

Hydroquinone (HQ), one of the metabolites of benzene in humans, has significant hepatotoxic properties. Chronic exposure to HQ can lead to leukemia. In a previous study by this group, we constructed a model of malignant transformation of human lymphoblastoid cells (TK6) induced by chronic exposure to HQ with significant subcutaneous tumorigenic capacity in nude mice. miR-92a-3p is a tumor factor whose role in HQ-induced malignant transformation is not yet clear. In the present study, raw signal analysis and dual-luciferase reporter gene results suggested that miR-92a-3p could target and regulate TOB1, and the expression level of miR-92a-3p was significantly upregulated in the long-term HQ-induced TK6 malignant transformation model, while the anti-proliferative factor TOB1 was significantly downregulated. To investigate the mechanism behind this, we inhibited miR-92a-3p in a malignant transformation model and found a decrease in cell viability, a decrease in MMP-9 protein levels, a G2/M phase block in the cell cycle, and an upregulation of the expression of G2/M phase-related proteins cyclinB1 and CDK1. Inhibition of miR-92a-3p in combination with si-TOB1 restored cell viability, inhibited cyclin B1 and CDK1 protein levels, and attenuated the G2/M phase block. Taken together, miR-92a-3p reduced the cell proliferation rate of HQ19 and caused cell cycle arrest by targeting TOB1, which in turn contributed to the altered malignant phenotype of the cells. This study suggests that miR-92a-3p is likely to be a biomarker for long-term HQ-induced malignant transformation of TK6 and could be a potential therapeutic target for leukemia caused by long-term exposure to HQ.


Subject(s)
Leukemia , MicroRNAs , Animals , Mice , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Hydroquinones/toxicity , Mice, Nude , Cell Division , Apoptosis/genetics
11.
Int J Biol Macromol ; 231: 123421, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36731697

ABSTRACT

Blending poly (lactic acid) (PLA) with cellulose nanocrystals (CNCs) to fabricate nanocomposites is a valuable strategy to improve the properties of PLA without sacrificing its biodegradability. However, the nucleation and reinforcing mechanisms of CNCs for semi-crystalline PLA matrix are still elusive in melt-processed PLA/CNC nanocomposites. Herein, poly (vinyl acetate) (PVAc) chains were grafted onto the surface of CNCs via an efficient radical polymerization in an aqueous medium, making CNCs suitable for conventional melting processing techniques. It is found that the dispersion state of CNCs in the PLA matrix and the interface interaction between PLA and CNCs can be tailored by varying the PVAc grafting density. Further studies show that well-dispersed CNCs play a positive role in reinforcing PLA. But unexpectedly, the nucleation effect is suppressed even though the homogeneous dispersion of CNCs is achieved with higher PVAc grafting density because the rich PVAc chains at the interface dilute the PLA chains, thus hindering the nucleation and spherulite growth of PLA. This research sheds light on the nucleation and reinforcing mechanisms of polymer grafted CNCs, and will provide theoretical guidance for the industrialization of high-performance bio-based nanocomposites.


Subject(s)
Nanocomposites , Nanoparticles , Cellulose/chemistry , Polyesters/chemistry , Nanoparticles/chemistry , Nanocomposites/chemistry , Lactic Acid/chemistry
12.
Org Biomol Chem ; 21(10): 2059-2068, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36779235

ABSTRACT

Triazene is one of the most versatile building blocks in organic synthesis. Generally, it is viewed as a safe equivalent of diazonium salt, thus immediately finding numerous applications in preparative chemistry and medicinal chemistry. Besides, it can be used as a removable directing group in C-H functionalization or play a smart role as a precursor for aryl cation/radical generation. In this review, we will highlight recent noteworthy developments in this field.

13.
Int J Biol Macromol ; 230: 123168, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36621734

ABSTRACT

Cellulose nanocrystals (CNCs), as the promising reinforcing fillers in the rubber industry, their surface chemical groups have vital effects on the vulcanization kinetics, cross-linking densities, and mechanical properties of rubber composites. Herein, CNCs with acidic carboxyl (CCA) and alkaline amino groups (CCP) were produced by modifying the sulfonic CNCs (CCS) in environment-friendly ways. Studies found the CCS and CCA with acid groups have obvious inhibiting effects on the vulcanization of natural rubber (NR), while CCP with alkaline amino groups accelerates the vulcanization of NR. Differential scanning calorimeter, Fourier transform infrared spectroscopy, and Electron paramagnetic resonance, etc. were performed to clarify the effecting mechanisms of CNCs surface groups on NR vulcanization. It was found that NR/CCS and NR/CCA nanocomposites vulcanize through radical reactions, and the surface acidic groups of CCS and CCA, i.e., hydroxyl, sulfonate, and carboxyl groups inactivate the sulfur radicals generated during vulcanization and depress the vulcanization activity. The amino groups of the polyethyleneimine of CCP promote the ring opening of sulfur (S8) or the breaking of polysulfide bonds connected to NR molecular chains to form sulfur anion with a strong nucleophilic ability, which leads to the cross-linking of NR/CCP reacts via ionic reaction mainly. The vulcanization rate and cross-linking density of NR/CCP are improved by the ionic reaction. And benefiting from the higher cross-linking density and the reinforcement of CCP, NR/CCP had the best physical and mechanical properties. Our work elucidates the mechanism of the surface chemical groups of CNCs affecting NR vulcanization and may provide ideas for the preparation of high-performance rubber composites reinforced by CNCs.


Subject(s)
Nanocomposites , Nanoparticles , Cellulose/chemistry , Rubber/chemistry , Nanocomposites/chemistry , Nanoparticles/chemistry
14.
Heliyon ; 9(1): e12879, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36691552

ABSTRACT

The proportion of global electricity generated by wind is increasing. There are concerns that onshore wind farms may affect local winds and/or patterns, with impacts on local ecosystems. Global-scale evaluations of these impacts are lacking. To investigate this issue, we used TerraClimate and ERA5 datasets covering the years 1980-1999 to judge the impact of onshore wind farms on wind speeds (at 10 m and 100 m elevations) and their distribution patterns. Winds were compared in two periods approximately representing periods without (1980-1999) and with (2001-2020) large-scale wind farms in existence. The TerraClimate dataset shows that 10 m wind speeds decreased at wind farm locations, while the wind speed distribution patterns did not change significantly. However, in the densest wind farm areas, the 10 m wind speeds actually increased. Analysis of the ERA5 data showed no significant changes in 10 m and 100 m wind speeds or distribution patterns at wind farm locations. The influence of wind farms on local and global wind speeds was slight and far less than that of oceanic/atmospheric oscillations. In the long term, the potential for onshore wind farms to reduce global wind speeds or affect their distribution patterns is very small.

15.
J Environ Sci (China) ; 125: 160-170, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375902

ABSTRACT

Simultaneous anammox and denitrification (SAD) is an efficient approach to treat wastewater having a low C/N ratio; however, few studies have investigated a combination of SAD and partial nitritation (PN). In this study, a lab-scale up-flow blanket filter (UBF) and zeolite sequence batch reactor (ZSBR) were continuously operated to implement SAD and PN advantages, respectively. The UBF achieved a high total nitrogen (TN) removal efficiency of over 70% during the start-up stage (days 1-50), and reached a TN removal efficiency of 96% in the following 90 days (days 51-140) at COD/NH4+-N ratio of 2.5. The absolute abundance of anammox bateria increased to the highest value of 1.58 × 107 copies/µL DNA; Comamonadaceae was predominant in the UBF at the optimal ratio. Meanwhile, ZSBR was initiated on day 115 as fast nitritation process to satisfy the influent requirement for the UBF. The combined process was started on day 140 and then lasted for 30 days, during the combined process, between the two reactors, the UBF was the main contributor for TN (66.5% ± 4.5%) and COD (71.8% ± 4.9%) removal. These results demonstrated that strong SAD occurred in the UBF when following a ZSBR with in-situ NOB elimination. This research presents insights into a novel biological nitrogen removal process for low C/N ratio wastewater treatment.


Subject(s)
Nitrogen , Zeolites , Denitrification , Bioreactors , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Wastewater , Sewage
16.
Front Microbiol ; 13: 1026872, 2022.
Article in English | MEDLINE | ID: mdl-36325021

ABSTRACT

As an important environmental protection measure, the Poplar Ecological Retreat (PER) project aims to restore the ecology of the Dongting Lake (DL, China's second largest freshwater lake) wetland. And its ecological impact is yet to be revealed. This study selected soil bacterial community structure (BCS) as an indicator of ecological restoration to explore the ecological impact of PER project on DL wetland. Soil samples were collected from reed area (RA, where poplar had never been planted, as the end point of ecological restoration for comparison in this study), poplar planting area (PA), poplar retreat for 1-year area (PR1A) and poplar retreat for 2 years area (PR2A), then their soil properties and BCS were measured. The results showed that the PER project caused significant changes in soil properties, such as the soil organic matter (SOM) and moisture, and an increase in the diversity and richness index of soil BCS. The Shannon-wiener index of RA, PA, PR1A and PR2A were 3.3, 2.63, 2.75 and 2.87, respectively. The number of operational taxonomic units (OTUs) changed similarly to the Shannon-wiener index. The Pearson correlation analysis and redundancy analysis (RDA) showed that the poplar retreat time, SOM and moisture content were the main factors leading to the increase of BCS diversity. All of these indicated that after the implementation of the PER project, the ecology of the lake area showed a trend of gradual recovery.

17.
Dalton Trans ; 51(44): 16964-16972, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36300420

ABSTRACT

Three pentagonal bipyramidal mononuclear Dy(III) complexes based on amino-substituted nitrophenol and tetradentate amide ligands of formulas [Dy(Hbpen)(OPhNO2NH2Cl)Cl2] (1), [Dy(Hbpen)(OPhNO2NH2)Cl2] (2) and [Dy(Hbpen)(OPhNO2NH2Cl)3] (3) (Hbpen = N,N'-bis(2-pyridylmethyl)-ethylenediamine, OPhNO2NH2Cl = 2-amino-6-chloro-4-nitrophenol, and OPhNO2NH2 = 2-amino-4-nitrophenol) were isolated. X-ray diffraction studies illustrate that complexes 1 and 2 with one strongly coordinating phenol ligand at their equatorial positions have a similar structure except for a slight difference in the chloride substituent of the phenol ligand. Complex 3 possesses the same equatorial coordination as 1 but its apical positions are occupied by two other phenol ligands. Magnetic studies show that 1 and 2 are zero-field single-ion magnets (SIMs), and 3 exhibits field-induced SIM behavior. Upon removing the chloride substituent groups from the phenol ligand, the effective energy barrier enhances from 233.7 K (1) to 362.7 K (2) under external dc fields. The stronger quantum tunneling of magnetization observed for 3 in comparison with 1 shows the destructive influence of a strong phenoxyl oxygen ligand field contributing to the transverse component on the magnetic properties. A comparison of complex 2 and the reported Dy(III) analogue [Dy(Hbpen)Cl(OPhBr2NO2)2] with two phenol ligands (2,6-dibromo-4-nitrophenol) in the axial direction leads to the conclusion that the magnetic anisotropy is strongly dependent on the Dy-Ophenoxyl bond lengths. The results provide direct information vital to understanding how the strong coordination environment at the axial or equatorial positions influences the SIM behavior.

18.
Bioresour Technol ; 345: 126546, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34906706

ABSTRACT

This study aimed to evaluate the chemical form variation of Mn in Phytolacca acinosa Roxb. residue under different pyrolysis temperatures and its contribution to decontamination efficacy of lead (Pb(II)) and tetracycline (TC). The results illuminated that pyrolysis temperature is a crucial factor of fraction and bioavailability of Mn and other heavy metals in the resultant biochar and pyrolysis temperature under 450 °C may be most suitable for reutilization without potential risk. The Mn-enriched phytolaccaceae biochar (PSB450) exhibited more preferential sorption toward Pb(II) (279.33 mg/g) and TC (47.51 mg/g) than pristine phytolaccaceae biochar in the single system, mainly due to the formation of MnOx and Mn minerals via pyrolysis. Binary adsorption showed that Pb(II) would serve as a bridge between PSB450 and TC by complexation within a limited concentration range, thus facilitating their joint decontamination. This study provided an efficient alternative approach for reutilization of Mn-contaminated biomass.


Subject(s)
Phytolacca , Adsorption , Biodegradation, Environmental , Charcoal , Lead , Manganese , Tetracycline
19.
Sci Total Environ ; 801: 149696, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34418626

ABSTRACT

Pyrolytic carbon materials (PCMs) with various surface functionalities are widely used as environmentally friendly and cost-efficient adsorbents for the removal of organic and inorganic pollutants. Recent studies have illustrated that PCMs as electron shuttles (ESs) could also show excellent performances in promoting the anaerobic transformation of recalcitrant organic pollutants (ROPs). Numerous studies have demonstrated the excellent electron-shuttle capability (ESC) of PCMs to stimulate the anaerobic reductive transformation of ROPs. However, there is a lack of consistent understanding of the mechanism of ESC formation in PCMs and the stimulation mechanism for ROPs anaerobic transformation. To gain a more comprehensive understanding of the latest developments in the study of PCMs as ESs for ROPs anaerobic transformation, this review summarizes the formation mechanism, influencing factors, and stimulation mechanisms of ESC. ESC benefits from redox functional groups (quinone and phenol groups), persistent free radicals (PFRs), redox-active metal ions, conductive graphene phase, and porous nature of their surface. The factors influencing ESC include the highest treatment temperature (HTT), feedstocks, modification methods, and environmental conditions, of which, the HTT is the key factor. PCMs promote the reductive transformation of ROPs under anaerobic conditions via abiotic and biotic pathways. Eventually, the prospects for the ROPs anaerobic transformation enhanced by PCMs are proposed.


Subject(s)
Electrons , Environmental Pollutants , Anaerobiosis , Carbon
20.
Environ Sci Pollut Res Int ; 28(47): 66589-66601, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34235678

ABSTRACT

In order to enhance degradation of harmful organic pollutants like Rhodamine B (RhB) dye under visible-light irradiation (λ >420 nm), a silver iodide/reduced graphene oxide/bismuth molybdate (AgI/rGO/Bi2MoO6) Z-scheme heterojunction photocatalyst was synthesized by a solvothermal process combined with an in-situ precipitation technique. The AgI (15 wt.%)/rGO/Bi2MoO6 (AGBMO-15) photocatalyst with a dosage of 0.5 g/L exhibited the highest photocatalytic activity with 98.0% RhB removal under an initial concentration of 10 mg/L within 30 min. This removal rate was approximately 65.8%, 57.7%, and 72.7% higher than that for a rGO/Bi2MoO6 (GBMO) binary composite, pure AgI powder, and pristine Bi2MoO6 nanoplates, respectively. The novel photocatalyst achieved approximately three times higher photocatalytic degradation within a shorter period of visible-light irradiation than pure Bi2MoO6. Through photoluminescence analysis and trapping experiments, this outstanding performance was attributed to the efficient separation of photogenerated electron-hole pairs owing to an internal electric field at the contact interface of AgI and Bi2MoO6, which generated more superoxide radical anions (•O2-) as primary reactive species to promote RhB degradation. Meanwhile, the rGO participated in the capture of visible-light and played a role of solid electronic medium at the AgI/Bi2MoO6 interface, which realized an effective Z-scheme electron transfer path, avoided the self oxidation of photocatalyst and prolonged the carrier life. Furthermore, the AGBMO-15 photocatalyst exhibited excellent photocatalytic degradation stability, maintaining an RhB removal rate of 96.2% after four cycles of reuse. Due to its simplicity, reusability, and controllability, the proposed photocatalyst has excellent application potential for the environmental remediation of wastewater.


Subject(s)
Graphite , Water Purification , Bismuth , Catalysis , Molybdenum
SELECTION OF CITATIONS
SEARCH DETAIL
...