Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Adv Sci (Weinh) ; : e2400058, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937989

ABSTRACT

Genetically lean and obese individuals have distinct intestinal microbiota and function. However, the underlying mechanisms of the microbiome heterogeneity and its regulation on epithelial function such as intestinal stem cell (ISC) fate remain unclear. Employing pigs of genetically distinct breeds (obese Meishan and lean Yorkshire), this study reveals transcriptome-wide variations in microbial ecology of the jejunum, characterized by enrichment of active Lactobacillus species, notably the predominant Lactobacillus amylovorus (L. amylovorus), and lactate metabolism network in obese breeds. The L. amylovorus-dominant heterogeneity is paralleled with epithelial functionality difference as reflected by highly expressed GPR81, more proliferative ISCs and activated Wnt/ß-catenin signaling. Experiments using in-house developed porcine jejunal organoids prove that live L. amylovorus and its metabolite lactate promote intestinal organoid growth. Mechanistically, L. amylovorus and lactate activate Wnt/ß-catenin signaling in a GPR81-dependent manner to promote ISC-mediated epithelial proliferation. However, heat-killed L. amylovorus fail to cause these changes. These findings uncover a previously underrepresented role of L. amylovorus in regulating jejunal stem cells via Lactobacillus-lactate-GPR81 axis, a key mechanism bridging breed-driven intestinal microbiome heterogeneity with ISC fate. Thus, results from this study provide new insights into the role of gut microbiome and stem cell interactions in maintaining intestinal homeostasis.

2.
Gut Microbes ; 16(1): 2353399, 2024.
Article in English | MEDLINE | ID: mdl-38757687

ABSTRACT

Intestinal stem cells (ISCs) play a pivotal role in gut physiology by governing intestinal epithelium renewal through the precise regulation of proliferation and differentiation. The gut microbiota interacts closely with the epithelium through myriad of actions, including immune and metabolic interactions, which translate into tight connections between microbial activity and ISC function. Given the diverse functions of the gut microbiota in affecting the metabolism of macronutrients and micronutrients, dietary nutrients exert pronounced effects on host-microbiota interactions and, consequently, the ISC fate. Therefore, understanding the intricate host-microbiota interaction in regulating ISC homeostasis is imperative for improving gut health. Here, we review recent advances in understanding host-microbiota immune and metabolic interactions that shape ISC function, such as the role of pattern-recognition receptors and microbial metabolites, including lactate and indole metabolites. Additionally, the diverse regulatory effects of the microbiota on dietary nutrients, including proteins, carbohydrates, vitamins, and minerals (e.g. iron and zinc), are thoroughly explored in relation to their impact on ISCs. Thus, we highlight the multifaceted mechanisms governing host-microbiota interactions in ISC homeostasis. Insights gained from this review provide strategies for the development of dietary or microbiota-based interventions to foster gut health.


Subject(s)
Gastrointestinal Microbiome , Homeostasis , Host Microbial Interactions , Intestinal Mucosa , Stem Cells , Humans , Gastrointestinal Microbiome/physiology , Stem Cells/metabolism , Animals , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Intestines/microbiology , Bacteria/metabolism , Bacteria/classification
3.
Food Funct ; 15(3): 1237-1249, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38227487

ABSTRACT

Gut hormones are produced by enteroendocrine cells (EECs) found along the intestinal epithelium, and these cells play a crucial role in regulating intestinal function, nutrient absorption and food intake. A hydrolyzed casein diet has been reported to promote the secretion of gut hormones through the regulation of EEC development, but the underlying mechanism remains unclear. Therefore, this study was conducted to investigate whether the hydrolyzed casein diet can regulate EEC differentiation by employing mouse and organoid models. Mice were fed diets containing either casein (casein group) or hydrolyzed casein (hydrolyzed casein group) as the sole protein source. The hydrolyzed casein diet upregulated the expression of transcription factors, induced EEC differentiation, increased fasting serum ghrelin concentrations and promoted gastrointestinal (GI) motility in the duodenum compared to the casein diet. Interestingly, these differences could be abolished when there is addition of antibiotics to the drinking water, suggesting a significant role of gut microbiota in the hydrolyzed casein-mediated EEC function. Further investigation showed that the hydrolyzed casein diet led to reduced microbial diversity, especially the abundance of Akkermansia muciniphila (A. muciniphila) on the duodenal mucosa. In contrast, gavage with A. muciniphila impaired EEC differentiation through attenuated neurog3 transcription factor (Ngn3) expression, mediated through the promotion of Notch signaling. Moreover, pasteurized A. muciniphila showed similar effects to enter organoids in vitro. Overall, we found that a hydrolyzed casein diet reduced the abundance of A. muciniphila and promoted Ngn3 controlling EEC differentiation and this pathway is associated with increased GI motility in mice. The findings provide new insights into the role of hydrolyzed casein in gut transit and guidelines for using hydrolyzed casein in safe formula milk.


Subject(s)
Caseins , Gastrointestinal Hormones , Mice , Animals , Caseins/metabolism , Cell Differentiation , Enteroendocrine Cells , Diet , Transcription Factors/metabolism , Gastrointestinal Hormones/metabolism , Gastrointestinal Motility
4.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3163-3175, 2023 11.
Article in English | MEDLINE | ID: mdl-37191727

ABSTRACT

Ubiquitin-specific protease 22 (USP22) expression was reported to be increased in response to ischemic brain damage, but the biological role and underlying mechanism remain little understood. USP22 shRNA was intravenously injected into the mouse brain, and then a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model was constructed, and the infarct volume, neurobehavioral deficit score, cell apoptosis, oxidative stress, and autophagy in vivo were evaluated. Oxygen-glucose deprivation/reperfusion (OGD/R) treated pheochromocytoma-12 (PC12) cells were used as an in vitro model of ischemia/reperfusion. The effects of USP22 on proliferation, apoptosis, oxidative stress, and autophagy were explored by CCK-8, flow cytometry, ELISA, and Western blot assays. The relationship between USP22 and the phosphatase and tensin homolog (PTEN) was measured by Co-IP and Western blot assays. Both USP22 and PTEN were highly expressed in MCAO/R mouse brain tissues and OGD/R-induced PC12 cells. In vitro, USP22 knockdown strongly improved OGD/R-mediated changes in cell viability, apoptosis, oxidative stress, and lactate dehydrogenase (LDH) production in PC12 cells. USP22 bound to PTEN and stabilized PTEN expression by decreasing its ubiquitination. PTEN overexpression reversed the promoting effect of USP22 knockdown on cell viability and the inhibitory effects of USP22 knockdown on apoptosis, oxidative stress, and LDH release rate in PC12 cells subjected to OGD/R. PTEN silencing elevated the protein levels of p62, p-mTOR, TFEB, and LAMP1 and reduced the protein levels of LC3-II/LC3-I. USP22 expression levels were negatively correlated with mTOR expression levels, and USP22-shRNA-mediated expression of p62, p-mTOR, TFEB, and LAMP1 was reversed by rapamycin, an inhibitor of mTOR. In vivo, USP22 silencing significantly alleviated infarct volume, neurobehavioral impairments, cell apoptosis, oxidative stress, and autophagy in MCAO/R mice. USP22 knockdown exerts neuroprotective effects in cerebral ischemia/reperfusion injury by downregulating PTEN and activating the mTOR/TFEB pathway.


Subject(s)
PTEN Phosphohydrolase , Reperfusion Injury , Ubiquitin Thiolesterase , Animals , Mice , Rats , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Infarction, Middle Cerebral Artery , PTEN Phosphohydrolase/genetics , Reperfusion Injury/prevention & control , Reperfusion Injury/metabolism , RNA, Small Interfering , TOR Serine-Threonine Kinases/metabolism , Transcription Factors , Gene Knockdown Techniques , Ubiquitin Thiolesterase/genetics
5.
Metab Brain Dis ; 37(8): 2763-2775, 2022 12.
Article in English | MEDLINE | ID: mdl-36173508

ABSTRACT

BACKGROUND: Ferroptosis is a non-apoptotic form of programmed cell death and has been found in ischemic stroke. Increasing evidence revealed that ELAVL1 is associated with ferroptosis, but it remains largely unclear whether ELAVL1 is involved in ischemic stroke. Here, we aimed to investigate the biological role and mechanism of ELAVL1 in cerebral ischemia/reperfusion (I/R) injury. METHODS: ELAVL1 shRNA were intravenously injected into rat brain, and then ischemic/reperfusion (I/R) model was constructed in rats to detect infarct volume, neurobehavioral deficit, and several ferroptosis factors (GSH, GPX4, SLC7A11, MDA, ROS, iron ion) in vivo. Oxygen-glucose deprivation/reperfusion (OGD/R) treated pheochromocytoma-12 (PC12) cells were used as in vitro models of I/R. RIP, biotin pull-down and ChIP assays was used to explore the relationship among ELAVL1, DNMT3B, and PINK1. RESULTS: ELAVL1 was highly expressed in rat brain tissue after I/R injury. Compared with those in the I/R group, the injection of RSL3 (30 mg/kg) or ferrostatin-1 (10 mg/kg) aggravated or alleviated infarct volume, neurobehavioral impairments, and increased or decreased ferroptosis factor levels, respectively. ELAVL1 silencing ameliorated brain damage in I/R-treated rats by inhibiting ferroptosis. Moreover, ELAVL1 silencing observably facilitated cell viability, GSH content, GPX4 and SLC7A11 expression, and reduced iron ion concentration, ROS and MDA levels in OGD/R-treated PC12 cells. ELAVL1 bound with DNMT3B mRNA 3'UTR and promoted DNMT3B expression. ELAVL1 inhibited PINK1 expression through stabilizing DNMT3B mRNA and blocking DNMT3B-mediated DNA methylation of PINK1 promoter. PINK1 knockdown reversed the effects of ELAVL1 inhibition on cell viability, GSH, GPX4, SLC7A11, iron ion concentration, ROS and MDA levels in OGD/R-treated PC12 cells. CONCLUSION: ELAVL1 plays a critical role in protecting against ferroptosis-induced cerebral I/R and subsequent brain damage via DNMT3B/PINK1 axis, thus providing a new potential target for ischemic stroke treatment.


Subject(s)
Brain Ischemia , Ferroptosis , Ischemic Stroke , Reperfusion Injury , Rats , Animals , Down-Regulation , Reactive Oxygen Species/metabolism , Methylation , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Cerebral Infarction , Reperfusion , Iron/metabolism , RNA, Messenger/metabolism , Protein Kinases/metabolism
6.
Eur J Neurosci ; 56(3): 4045-4059, 2022 08.
Article in English | MEDLINE | ID: mdl-35678781

ABSTRACT

In vitro cell experiments have suggested that recombinant human erythropoietin (rhEPO) and peroxisome proliferator activated receptor γ (PPARγ) activation exert protective effects on neurons. This study observed the learning and memory ability, antioxidant capacity and the ratio of apoptotic cells after rhEPO intervention and investigated the relationship among rhEPO, PI3K/Akt and PPARγ in the anti-neural oxidative stress injury process in vivo. The results showed that rhEPO significantly improved the learning and memory abilities of rats subjected to oxidative stress, enhanced the antioxidant capacity of cells, and reduced neuronal apoptosis. Then, the PI3K/Akt and PPARγ pathways were inhibited, and TUNEL staining were used to observe the changes in the effect of rhEPO. After the PI3K/Akt and PPARγ pathways were inhibited, the effect of rhEPO on rats subjected to oxidative stress was significantly weakened, suggesting that both the PI3K/Akt and PPARγ pathways are involved in the process by which rhEPO protects neurons. Finally, Western blotting and immunofluorescence staining were used to observe the changes in PI3K/Akt and PPARγ signalling proteins in the neurons after the rhEPO intervention and to explore the relationship among the three. The results showed that rhEPO significantly increased the levels of the p-Akt and PPARγ proteins and the level of the PPARγ protein in the nucleus, indicating that the PI3K/Akt pathway was located upstream of and regulates PPARγ. In conclusion, this study suggested that rhEPO activates the PI3K/Akt to upregulate PPARγ, enhance the cellular antioxidant capacity, and protect neurons in rats subjected to oxidative stress.


Subject(s)
Antioxidants , Erythropoietin , PPAR gamma , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Apoptosis , Erythropoietin/metabolism , Erythropoietin/pharmacology , Humans , Neurons/physiology , Oxidative Stress , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Recombinant Proteins , Up-Regulation
7.
J Mol Neurosci ; 72(8): 1586-1597, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35505269

ABSTRACT

Previous studies have confirmed that both recombinant human erythropoietin (rhEPO) and peroxisome proliferator-activated receptors γ (PPARγ) activator pioglitazone can protect senescent nerve cells, and their mechanisms involve enhancing cell antioxidant capacity and reducing cell apoptosis. However, whether the PPARγ pathway is involved in the rhEPO anti-aging process in neuronal cells is still unclear. In this study, to explore the relationship between rhEPO and the PPARγ pathway at the cellular level, primary nerve cells cultured for 22 days were used to simulate the natural aging process of nerve cells. Starting on the 11th day of culture, rhEPO, LY294002, and GW9662 were added for treatment. Immunochemical methods and SA-ß-gal staining were used to observe the changes in cellular antioxidant capacity and the fraction of senescent cells. The results showed that PPARγ blockade retarded the effect of rhEPO on the cellular antioxidant capacity and altered the fraction of senescent cells. It was confirmed that PPARγ was involved in rhEPO's anti-aging process in neuronal cells. Real-time fluorescent quantitative RT-PCR, Western blotting, and immunofluorescence staining were used to observe the changes in PPARγ pathway-related factors in nerve cells after rhEPO treatment. The results showed that rhEPO significantly upregulated the expression of PPARγ coactivator-1α (PGC-1α), PPARγ, and nuclear PPARγ in cells but did not affect the level of phosphorylated PPARγ protein, confirming that rhEPO has the ability to upregulate the PPARγ pathway. PI3K/Akt and PPARγ pathway blockade experiments were used to explore the relationships among rhEPO, PI3K/Akt, and PPARγ. The results showed that after PPARγ blockade, rhEPO had no significant effect on the PI3K/Akt pathway-related factor p-Akt, while after PI3K/Akt blockade, rhEPO's effects on PPARγ-related factors (PGC-1α, PPARγ, and nuclear PPARγ) were significantly decreased. It is suggested that rhEPO delays the PI3K/Akt pathway in the process of neuronal senescence, which is located upstream of PPARγ regulation. In conclusion, this study confirmed that rhEPO can upregulate the expression of PGC-1α and PPARγ in cells and the level of PPARγ protein in the nucleus to enhance the antioxidant capacity of cells and delay the senescence of nerve cells through the PI3K/Akt pathway. These findings will provide ideas for finding new targets for neuroprotection research and will also provide a theoretical basis and experimental evidence for rhEPO anti-aging research in neural cells.


Subject(s)
Erythropoietin , PPAR gamma , Animals , Antioxidants/pharmacology , Cells, Cultured , Cellular Senescence , Erythropoietin/metabolism , Erythropoietin/pharmacology , Humans , Neurons/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Recombinant Proteins/metabolism
8.
Neuroreport ; 33(4): 186-198, 2022 03 02.
Article in English | MEDLINE | ID: mdl-35143447

ABSTRACT

OBJECTIVE: Previous studies have found that recombinant human erythropoietin (rhEPO) protects long-term cultured ageing primary nerve cells by enhancing the endogenous antioxidant capacity of cells; however, its signalling pathways are not clear. This study aimed to explore the relationship between the rhEPO and PI3K/Akt pathways in the protection of senescent nerve cells at the cellular level. METHODS: Primary nerve cells were cultured for 22 days to mimic the natural ageing process of nerve cells. rhEPO and LY294002 were administered as an intervention on the 11th day of culture. Western blot, immunochemistry, 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide, immunofluorescence double-labelling staining, Annexin V-FITC/PI double-labelling flow cytometry, and SA-ß-gal staining experiments were used to observe the expression levels of erythropoietin receptor (EPOR) and phosphorylated Akt (p-Akt) protein and the related indices of nerve cell senescence. RESULTS: Western blot experiments showed that in ageing long-term cultured primary neurons, the EPOR and p-Akt decreased and rhEPO upregulated the expression levels of EPOR and p-Akt protein. The rest showed that the PI3K/Akt pathway blockade reduced the antioxidation capacity, cell viability, cell morphology, and ratio of apoptotic cells and senescent cells of rhEPO on ageing long-term cultured primary nerve cells. CONCLUSIONS: This study explored the relationship between the rhEPO and PI3K/Akt pathways in the protection of ageing nerve cells at the cellular level and found that rhEPO protects long-term cultured ageing primary nerve cells by upregulating the PI3K/Akt pathway. These findings provide a theoretical basis and experimental evidence for the antiaeging mechanism of EPO in the nervous system.


Subject(s)
Erythropoietin , Proto-Oncogene Proteins c-akt , Aging , Apoptosis/physiology , Cells, Cultured , Erythropoietin/pharmacology , Humans , Neurons/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Recombinant Proteins/pharmacology
9.
Sci Rep ; 10(1): 10866, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616911

ABSTRACT

The plant hormone auxin is essential for plant growth and development. YUCCA proteins catalyse the rate-limiting step for endogenous auxin biosynthesis. In this study, we isolated 20 MdYUCCA genes from apple genome. MdYUCCA6a, MdYUCCA8a, and MdYUCCA10a were expressed in most organs and could support whole plant basal auxin synthesis. MdYUCCA4a, MdYUCCA10b, and MdYUCCA11a expression indicated roles for these genes in auxin biosynthesis in vegetative organs. MdYUCCA2b, MdYUCCA11b, and MdYUCCA11d were mainly expressed in flower organs. High temperature induced the expression of MdYUCCA4a, MdYUCCA6a, MdYUCCA8a, and MdYUCCA10a, and down-regulated the expression of MdYUCCA2b and MdYUCCA6b. Dual-luciferase assay indicated that MdPIF4 could trans-activate the MdYUCCA8a promoter. Overexpression of MdYUCCA8a increased IAA content, increased stem height, enhanced apical dominance, and led to silique malformation. These results provide a foundation for further investigation of the biological functions of apple MdYUCCAs.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Plant , Genome, Plant , Indoleacetic Acids/metabolism , Malus/genetics , Multigene Family , Plant Proteins/genetics , Flowers/growth & development , Flowers/metabolism , Gene Expression Profiling , Malus/growth & development , Malus/metabolism , Phylogeny , Plant Development , Plant Growth Regulators/metabolism , Plant Proteins/metabolism
10.
Gut Microbes ; 11(4): 997-1014, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32138622

ABSTRACT

Little is known about the regulatory effect of microbiota on the proliferation and regeneration of ISCs. Here, we found that L. reuteri stimulated the proliferation of intestinal epithelia by increasing the expression of R-spondins and thus activating the Wnt/ß-catenin pathway. The proliferation-stimulating effect of Lactobacillus on repair is further enhanced under TNF -induced intestinal mucosal damage, and the number of Lgr5+ cells is maintained. Moreover, compared to the effects of C. rodentium on the induction of intestinal inflammation and crypt hyperplasia in mice, L. reuteri protected the intestinal mucosal barrier integrity by moderately modulating the Wnt/ß-catenin signaling pathway to avoid overactivation. L. reuteri had the ability to maintain the number of Lgr5+ cells and stimulate intestinal epithelial proliferation to repair epithelial damage and reduce proinflammatory cytokine secretion in the intestine and the LPS concentration in serum. Moreover, activation of the Wnt/ß-catenin pathway also induced differentiation toward Paneth cells and increased antimicrobial peptide expression to inhibit C. rodentium colonization. The protective effect of Lactobacillus against C. rodentium infection disappeared upon application of the Wnt antagonist Wnt-C59 in both mice and intestinal organoids. This study demonstrates that Lactobacillus is effective at maintaining intestinal epithelial regeneration and homeostasis as well as at repairing intestinal damage after pathological injury and is thus a promising alternative therapeutic method for intestinal inflammation.


Subject(s)
Intestinal Mucosa/pathology , Intestinal Mucosa/physiology , Limosilactobacillus reuteri/physiology , Animals , Cell Differentiation , Cell Proliferation , Citrobacter rodentium/growth & development , Enteritis/microbiology , Enteritis/prevention & control , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/prevention & control , Epithelial Cells/cytology , Intestinal Mucosa/cytology , Intestine, Small/microbiology , Mice , Mice, Inbred C57BL , Organoids , Paneth Cells/cytology , Probiotics , Regeneration , Signal Transduction , Tumor Necrosis Factor-alpha/pharmacology , Wnt Proteins/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
11.
Front Vet Sci ; 7: 42, 2020.
Article in English | MEDLINE | ID: mdl-32118065

ABSTRACT

Intestinal microbiota is necessary for the guarantee of intestinal mucosal barrier. However, the detailed effect of probiotics on porcine intestinal development, especially in the early life, is still unclear. In this study, we treated 3-day-old newborn piglets with Lactobacillus reuteri (L. reuteri) D8 and observed its beneficial effect on piglets. The body weights, villus height, and crypt depth of jejunum were all significantly increased after L. reuteri treatment in piglets. L. reuteri also significantly increased the proliferation index of PCNA+ cells in the crypt, as well as c-Myc and Tcf4 expressions. Furthermore, L. reuteri also enhanced intestinal mucosal barrier with the increase of goblet cells and antimicrobial peptides (AMPs) expressions of Muc2, Lyz1, and pBD1. The well development of Peyer's patches and increased number of CD3+ T cells, combined with increased expression of IL-4 and IFN-γ, also demonstrated the immune stimulation effect of L. reuteri D8. This study demonstrated that L. reuteri promotes the development of intestine mucosal system and maintains intestinal mucosal barrier in newborn piglets.

12.
Vet Microbiol ; 231: 154-159, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30955803

ABSTRACT

Pigs suffer enteritis induced by pathogenic bacteria infection and toxins in the moldy feed, which cause intestinal epithelial damage and diarrhea through the whole breeding cycle. Interleukin-22 (IL-22) plays a critical role in maintaining intestinal mucosal barrier function through repairing intestinal epithelial damage. However, little was known about the effects of IL-22 against apoptosis caused by toxins and infection of intestinal pathogens in the intestinal epithelium, especially in pigs. In this study, we had successfully used prokaryotic expression system to produce recombinant porcine interleukin-22. Meanwhile, purified rIL-22 could activate STAT3 signal pathway and have been demonstrated to be safe to IPEC-J2 cells by increasing E-cadherin expression, without proinflammatory cytokines changes. Furthermore, rIL-22 reversed apoptosis induced by deoxynivalenol (DON) and played a vital part in repairing the intestinal injury. We also found that rIL-22 stimulated epithelial cells to secrete pBD-1 against enterotoxigenic E. coli (ETEC) K88 infection, as well as alleviating apoptosis ratio. This study provided a theoretical basis for curing intestinal inflammation caused by ETEC infection and epithelial apoptosis induced by DON with rIL-22 in pigs.


Subject(s)
Enterotoxigenic Escherichia coli/pathogenicity , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Interleukins/pharmacology , Trichothecenes/adverse effects , Animals , Antimicrobial Cationic Peptides/biosynthesis , Apoptosis , Cell Line , Enterotoxigenic Escherichia coli/drug effects , Inflammation , Interleukins/immunology , Intestinal Mucosa/cytology , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , STAT3 Transcription Factor/metabolism , Signal Transduction , Swine , Interleukin-22
13.
Nan Fang Yi Ke Da Xue Xue Bao ; 39(1): 23-29, 2019 Jan 30.
Article in Chinese | MEDLINE | ID: mdl-30692062

ABSTRACT

OBJECTIVE: To study the protective effect of enhanced peroxisome proliferator activated receptor γ (PPARγ) pathway against apoptosis of long-term cultured primary nerve cells. METHODS: A natural aging model was established in primary rat nerve cells by long-term culture for 22 days. The cells were divided into control group, 0.1, 1.0, 5.0, and 10 µmol/L GW9662 intervention groups, and 0.1, 1.0, 5.0, and 10 µmol/L pioglitazone intervention groups. The cell viability was assessed using MTT assay and the cell morphological changes were observed after the treatments to determine the optimal concentrations of GW9662 and pioglitazone. Double immunofluorescence labeling and flow cytometry were used to observe the changes in the number of viable cells and cell apoptosis following the treatments; immunocytochemical staining was used to assess the changes in the anti-oxidation ability of the treated cells. RESULTS: The optimal concentrations of GW9662 and pioglitazone determined based on the cell viability and morphological changes were both 1 µmol/L. Compared with the control group, GW9662 treatment significantly lowered while pioglitazone significantly increased the total cell number and nerve cell counts (P < 0.05), and nerve cells in the cell cultures maintained a constant ratio at about 80% in all the groups (P > 0.05). GW9662 significantly enhanced while pioglitazone significantly lowered the cell apoptosis rates compared with the control group (P < 0.05). GW9662 obviously lowered SOD activity and GSH content in G group (P < 0.05) and increased MDA content in the cells (P < 0.05), and pioglitazone resulted in reverse changes in SOD, GSH and MDA contents in the cells (P < 0.05). CONCLUSIONS: Activation of PPARγ pathway protects long-term cultured primary nerve cells by enhancing cellular anti-oxidant capacity and reducing cell apoptosis, suggesting a potential strategy for anti-aging treatment of the nervous system through intervention of the PPARγ pathway.


Subject(s)
Anilides/administration & dosage , Apoptosis , Neurons/cytology , PPAR gamma/metabolism , Pioglitazone/administration & dosage , Anilides/pharmacology , Animals , Cell Proliferation , Cell Survival , Cells, Cultured , Cellular Senescence/physiology , Pioglitazone/pharmacology , Rats
14.
Res Vet Sci ; 122: 15-21, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30447500

ABSTRACT

To explore the effects of reducing the Cp levels on intestinal barrier function, low Cp (LP) and NRC standard Cp (NP) diets were fed to pigs from 45 to 160 days, and in vitro experiments were performed using monolayers of IPEC-J2 cells. The number of goblet cells, expression of proteins related to cell junction, amino acid transport, glucose transport, transepithelial electrical resistance (TEER), dextran permeability, and IL-6 secretion level were detected in pigs. The results demonstrated that a moderate reduction of Cp levels did not affect intestinal morphology, as demonstrated by a normal villi height, crypt depth and normal numbers of goblet cells. The maintenance of the intestinal structure obtained with LP was also confirmed by stable mRNA expression levels of muc2 and E-cadherin in the jejunum. We also found that LP did not affect the protein expression of cationic amino acid transporter 1 (CAT-1) and alanine serine cysteine transporter 1 (ASCT1) from 45 to 160 days. Moreover, the excitatory amino acid transporter 3 (EAAT3), sodium-glucose cotransporter 1 (SGLT1) and glucose transporter (GLUT2) protein expression levels in the jejunum were significantly increased at a certain age during the rearing period. Furthermore, we also demonstrated that a reduction in protein concentration up to 15% in the cultural medium of IPEC-J2 cells did not impact the mucosal barrier function. This study demonstrated that a moderate reduction of the protein level did not affect intestinal mucosal barrier function and morphology in the jejunum.


Subject(s)
Animal Feed/analysis , Diet/veterinary , Dietary Proteins/pharmacology , Intestines/drug effects , Swine/anatomy & histology , Animals , Dietary Proteins/administration & dosage , Dietary Supplements , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Intestines/anatomy & histology , Intestines/physiology , Sodium-Glucose Transporter 1/metabolism , Swine/physiology
15.
Mol Nutr Food Res ; 62(22): e1800552, 2018 11.
Article in English | MEDLINE | ID: mdl-30198100

ABSTRACT

SCOPE: The intestinal mucosal barrier, including the mucus layer, protects against invasion of enteropathogens, thereby inhibiting infection. In this study, the protective effect of Lactobacillus on the intestinal barrier against Salmonella infection is investigated. The underlying mechanism of its effect, specifically on the regulation of goblet cells through the Notch pathway, is also elucidated. METHODS AND RESULTS: Here, the protective effect of Lactobacillus on alleviating changes in the intestinal barrier caused by Salmonella infection is explored. It has been found that Salmonella typhimurium colonizes the colon and damages colonic mucosa. However, Lactobacillus acidophilus ATCC 4356 alleviates the colitis caused by Salmonella infection. Moreover, S. typhimurium infection causes colonic crypt hyperplasia with increased PCNA+ cells, while L. acidophilus administration resolves these pathological changes. In addition, it has been further demonstrated that Salmonella results in severe colitis associated with goblet cells, and Lactobacillus improves colitis similarly associated with goblet cells. Salmonella infection induces goblet cell loss and reduces MUC2 expression by increasing Dll1, Dll4, and HES1 expression, while L. acidophilus reverses epithelial damage by balancing the Notch pathway. CONCLUSION: The study demonstrates that colitis improvement is controlled by Lactobacillus ATCC 4356 by regulation of the Notch pathway; this finding will be useful for prevention against animal S. typhimurium infection.


Subject(s)
Colitis/therapy , Goblet Cells/microbiology , Lactobacillus acidophilus , Receptors, Notch/metabolism , Salmonella typhimurium/pathogenicity , Animals , Colitis/microbiology , Colitis/pathology , Colon/microbiology , Colon/pathology , Female , Gene Expression Regulation , Intestinal Mucosa/microbiology , Metabolic Networks and Pathways , Mice, Inbred C57BL , Mucin-2 , Salmonella Infections/prevention & control
16.
Chin J Integr Med ; 24(5): 372-377, 2018 May.
Article in English | MEDLINE | ID: mdl-29327124

ABSTRACT

OBJECTIVE: To observe the effect of puerarin on methyl-CpG binding protein 2 (MeCP2) phosphorylation (pMeCP2) in the hippocampus of a rat model of vascular dementia (VD). METHODS: Thirty-six healthy Sprague-Dawley rats were randomly assigned to the sham-operated group, dementia group and puerarintreated group using a random number table (n=12 per group). The modifified permanent bilateral common carotid artery occlusion method was used to establish the VD model. The sham-operated and dementia groups were given 2 mL/d of saline, while the puerarin-treated group was given 100 mg/(kg•d) of puerarin for 17 days. The learning and memory abilities were evaluated by the Morris water maze test. Hematoxylin-eosin staining, immunohistochemical (IHC) staining and Western blot analysis were carried out to observe changes in neuron morphology and in level of pMeCP2 in the hippocampus, respectively. RESULTS: The morphologies of rat hippocampal neurons in the puerarintreated group were markedly improved compared with the dementia group. The escape latency of the dementia group was significantly longer than the sham-operated group (P<0.05), while the puerarin-treated group was obviously shorter than the dementia group (P<0.05). Cross-platform times of the dementia group were signifificantly decreased compared with the sham-operated group (P<0.05), while the puerarin-treated group was obviously increased compared with the dementia group (P<0.05). IHC staining showed no significant difference in the number of MeCP2 positive cells among 3 groups (P>0.05). The number of pMeCP2 positive cells in the CA1 region of hippocampus in the dementia group was signifificantly increased compared with the sham-operated group, and the puerarin-treated group was signifificantly increased compared with the dementia group (both P<0.05). Western blot analysis showed no signifificant difference of MeCP2 expression among 3 groups (P>0.05). The expression of pMeCP2 in the dementia group was signifificantly increased compared with the sham-operated group, while it in the puerarin-treated group was signifificantly increased compared with the dementia group (P<0.05). CONCLUSION: Puerarin could play a role in the protection of nerve cells through up-regulating pMeCP2 in the hippocampus, improving neuron morphologies, and enhancing learning and memory ablities in a rat model of VD.


Subject(s)
Dementia, Vascular/drug therapy , Dementia, Vascular/genetics , Hippocampus/pathology , Isoflavones/therapeutic use , Methyl-CpG-Binding Protein 2/metabolism , Up-Regulation , Animals , Dementia, Vascular/physiopathology , Isoflavones/chemistry , Isoflavones/pharmacology , Memory/drug effects , Phosphorylation/drug effects , Rats, Sprague-Dawley , Up-Regulation/drug effects
17.
Int J Clin Exp Pathol ; 11(4): 2227-2240, 2018.
Article in English | MEDLINE | ID: mdl-31938335

ABSTRACT

EPO (erythropoietin) is a hormone-like substance with a putative role in hematopoietic regulation. Current research suggests that it exerts a neuroprotective effect by enhancing the activity of antioxidant enzymes. Our previous studies in vitro have confirmed that EPO can delay senescence of cultured neurons by activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) and the phosphoinositide-3-kinase (PI3K)/AKT pathway. Thus we set out to further substantiate the mechanism in vivo. A rat model of aging was induced by continuous subcutaneous injection of 5% D-galactose for 6 weeks. Starting at the 7th week, physiological saline or EPO was administered twice daily. LY294002, an inhibitor of the PI3K/AKT pathway, was also given to one of the groups. Improvement of learning and memory abilities were observed in the EPO intervention group. Raised levels of Cu-Zn SOD protein were detected by immunohistochemical staining and Western blot after using EPO, together with increased expression of PI3K/AKT pathway proteins. Concomitantly, there was an increase in expression of Nrf2 mRNA and a decrease in expression of Keap1 mRNA by qRT-PCR. All these effects were not found in the group injected with LY294002. We conclude that EPO can suppress aging by reducing oxidative stress. The proposed mechanism is an upregulation of the PI3K/Akt/Nrf2-ARE pathway and thus maintenance of expression and activation of antioxidant enzymes in aging rats.

18.
J Cell Biochem ; 119(1): 1093-1110, 2018 01.
Article in English | MEDLINE | ID: mdl-28696012

ABSTRACT

This study aimed to investigate the effects of SPAR signaling pathway on the restoration of motor function in ischemic stroke (IS). Sprague-Dawley male rats were separated into the control and sham groups, as well as the group for middle cerebral artery occlusion (MCAO) model establishment. Successfully established rat ischemic models were randomly divided into model, SNKMCAO-del and pcDNA3.1-SNK groups. The evaluation of motor function among the rats in each group was assessed using a balance beam, a screen test and the Garcia scoring method. CatWalk gait analysis was employed to evaluate the effect of the SNK signaling pathway on rat motor function. Triphenyltetrazolium chloride (TTC) and TUNEL staining were techniques were utilized for cerebral infarction (CI) area as well for hippocampal neuron apoptosis. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting methods were performed to detect mRNA and protein expressions of SNK and SPAR. When compared with the model group, the SNKMCAO-del group displayed decreased motor function score and CI area, while contrasting results were observed in the pcDNA3.1-SNK group. According to the results obtained from the CatWalk gait analysis, the SNKMCAO-del group showed a clear improvement compared to the model group whereas the pcDNA3.1-SNK group exhibited poorer results than the model group in the objective parameters of the study, such as movement, speed, running duration, print area, maximal contact area, maximal, mean intensity, and stride length. These findings suggested that SNK gene silencing promotes motor function by inhibiting the SNK-SPAR signaling pathway in rats with ischemic stroke.


Subject(s)
Brain Ischemia/therapy , GTPase-Activating Proteins/genetics , Gene Silencing , Protein Serine-Threonine Kinases/antagonists & inhibitors , Stroke/physiopathology , Animals , Brain Ischemia/complications , Brain Ischemia/physiopathology , Disease Models, Animal , GTPase-Activating Proteins/metabolism , Gait/drug effects , Genetic Vectors/administration & dosage , Humans , Male , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Random Allocation , Rats , Rats, Sprague-Dawley , Signal Transduction , Stroke/etiology , Stroke/therapy
19.
J Mol Neurosci ; 62(3-4): 291-303, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28634693

ABSTRACT

Erythropoietin (EPO) may protect the nervous system of animals against aging damage, making it a potential anti-aging drug for the nervous system. However, experimental evidence from natural aging nerve cell models is lacking, and the efficacy of EPO and underlying mechanism of this effect warrant further study. Thus, the present study used long-term cultured primary nerve cells to successfully mimic the natural aging process of nerve cells. Starting on the 11th day of culture, cells were treated with different concentrations of recombinant human erythropoietin (rhEPO). Using double immunofluorescence labeling, we found that rhEPO significantly improved the morphology of long-term cultured primary nerve cells and increased the total number of long-term cultured primary cells. However, rhEPO did not improve the ratio of nerve cells. A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to measure nerve cell activity and showed that rhEPO significantly improved the activity of long-term cultured primary nerve cells. Moreover, Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide (PI) double immunofluorescence labeling flow cytometry revealed that rhEPO reduced the apoptotic rate of long-term cultured primary nerve cells. Senescence-associated ß-galactosidase (SA-ß-gal) immunohistochemistry staining showed that rhEPO significantly reduced the aging rate of long-term cultured primary nerve cells. Immunochemistry revealed that rhEPO enhanced intracellular superoxide dismutase (SOD) activity and glutathione (GSH) abundance and reduced the intracellular malondialdehyde (MDA) level. In addition, this effect depended on the dose, was maximized at a dose of 100 U/ml and was more pronounced than that of vitamin E. In summary, this study finds that rhEPO protects long-term cultured primary nerve cells from aging in a dose-dependent manner. The mechanism of this effect may be associated with the enhancement of the intracellular anti-oxidant capacity. These findings provide a theoretical basis to further the anti-aging mechanism of EPO in the nervous system, and they provide experimental evidence at the cellular level for the clinical application of EPO to protect the nervous system from aging.


Subject(s)
Antioxidants/pharmacology , Cellular Senescence , Erythropoietin/pharmacology , Neurons/drug effects , Animals , Apoptosis , Cells, Cultured , Female , Glutathione/metabolism , Humans , Male , Malondialdehyde/metabolism , Neurons/cytology , Neurons/metabolism , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/metabolism , Vitamin E/pharmacology
20.
Front Physiol ; 8: 253, 2017.
Article in English | MEDLINE | ID: mdl-28503152

ABSTRACT

GRAS genes encode plant-specific transcription factors that play important roles in plant growth and development. However, little is known about the GRAS gene family in apple. In this study, 127 GRAS genes were identified in the apple (Malus domestica Borkh.) genome and named MdGRAS1 to MdGRAS127 according to their chromosomal locations. The chemical characteristics, gene structures and evolutionary relationships of the MdGRAS genes were investigated. The 127 MdGRAS genes could be grouped into eight subfamilies based on their structural features and phylogenetic relationships. Further analysis of gene structures, segmental and tandem duplication, gene phylogeny and tissue-specific expression with ArrayExpress database indicated their diversification in quantity, structure and function. We further examined the expression pattern of MdGRAS genes during apple flower induction with transcriptome sequencing. Eight higher MdGRAS (MdGRAS6, 26, 28, 44, 53, 64, 107, and 122) genes were surfaced. Further quantitative reverse transcription PCR indicated that the candidate eight genes showed distinct expression patterns among different tissues (leaves, stems, flowers, buds, and fruits). The transcription levels of eight genes were also investigated with various flowering related treatments (GA3, 6-BA, and sucrose) and different flowering varieties (Yanfu No. 6 and Nagafu No. 2). They all were affected by flowering-related circumstance and showed different expression level. Changes in response to these hormone or sugar related treatments indicated their potential involvement during apple flower induction. Taken together, our results provide rich resources for studying GRAS genes and their potential clues in genetic improvement of apple flowering, which enriches biological theories of GRAS genes in apple and their involvement in flower induction of fruit trees.

SELECTION OF CITATIONS
SEARCH DETAIL
...