Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 71(23): 8998-9008, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37260384

ABSTRACT

Plant bioactive metabolites such as flavonoids are usually present in glycosylated forms by the attachment of various sugar groups. In this study, a catalytically flexible and reversible glycosyltransferase (HtUGT72AS1) was cloned and characterized from Helleborus thibetanus. HtUGT72AS1 could directly accept six sugar donors (UDP-glucose/-arabinose/-galactose/-xylose/-N-acetylglucosamine/-rhamnose) to catalyze the 3-OH glycosylation of flavonols. It also catalyzed the 4' and 7-OH glycosylation of other types of flavonoids, which lacked the 3-OH group. Additionally, the HtUGT72AS1-catalyzed reaction was highly reversible when using 2-chloro-4-nitrophenyl glycosides as substrates, which could be used for one-pot or coupled production of bioactive glycosides. It is the first reported UGT for the synthesis of arabinosides and galactosides using a transglycosylation platform. Based on structural modeling and mutagenetic analysis, the mutation of Tyr377 to Ara enhanced the catalytic efficiency of HtUGT72AS1 toward UDP-N-acetylglucosamine, and the V146S mutant gained an improvement in the regioselectivity toward 7-OH of flavonoids.


Subject(s)
Acetylglucosamine , Glycosyltransferases , Glycosyltransferases/metabolism , Glycosides/chemistry , Flavonoids/chemistry , Plants/metabolism , Catalysis , Sugars , Uridine Diphosphate
SELECTION OF CITATIONS
SEARCH DETAIL
...