Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
Trials ; 25(1): 305, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711052

ABSTRACT

BACKGROUND: To analyze the perioperative bleeding and hidden blood loss (HBL) of sacroiliac screw minimally invasive treatment of pelvic posterior ring injury and explore the influential factors of HBL after operation for providing reference for clinical treatment. METHOD: A retrospective analysis was conducted on data from 369 patients with posterior pelvic ring injuries treated with sacroiliac screws internal fixation at our hospital from January 2015 to January 2022. The research was registered in the Chinese Clinical Trial Registry in July 2022 (ChiCTR2200061866). The total blood loss (TBL) and HBL of patients were counted, and the factors such as gender, age, and surgical duration were statistically analyzed. The influential factors of HBL were analyzed by multiple linear regression. RESULTS: The TBL was 417.96 ± 98.05 ml, of which the visible blood loss (VBL) was 37.00 ± 9.0 ml and the HBL was 380.96 ± 68.8 ml. The HBL accounted for 91.14 ± 7.36% of the TBL. Gender, surgical duration, fixed position, and fixed depth had significant effects on the HBL (P < 0.05). CONCLUSIONS: The HBL was the main cause of anemia after minimally invasive treatment of posterior pelvic ring injury with a sacroiliac screw. Gender, surgical duration, fixed position, and fixed depth were closely related to the occurrence of HBL. In clinical treatment, we should consider these influential factors and take effective measures to reduce the impact of HBL on patients.


Subject(s)
Blood Loss, Surgical , Bone Screws , Fracture Fixation, Internal , Pelvic Bones , Humans , Male , Female , Retrospective Studies , Pelvic Bones/injuries , Pelvic Bones/surgery , Adult , Middle Aged , Fracture Fixation, Internal/adverse effects , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Treatment Outcome , Risk Factors , Young Adult , Fractures, Bone/surgery , Fractures, Bone/diagnostic imaging , Time Factors , China , Aged , Minimally Invasive Surgical Procedures/methods , Anemia/etiology
2.
Front Plant Sci ; 14: 1162160, 2023.
Article in English | MEDLINE | ID: mdl-37056506

ABSTRACT

Climatic warming can alter grassland nitrous oxide (N2O) emissions due to soil property alterations. However, how the reclamation affect grassland N2O flux under warming conditions remains unclear in alpine meadow ecosystems. We conducted a long-term manipulative warming experiment in a natural alpine meadow and a cultivated grassland on the Qinghai-Tibetan Plateau to explore the separate and interactive effects of warming and reclamation on the soil N2O emission flux. N2O fluxes were measured under four treatments including control (CK), warming (W), reclamation (R) and warming under reclamation (WR) from August 2018 to July 2019. We measured the content of soil C, N nutrients and 5 enzymatic activities in 2018 and 2019. Correlation analysis and structural equation modeling were used to clarify how soil N availability and soil enzyme activities affect N2O emission. Our results indicated that compared to the ambient conditions for the growing and non-growing seasons, soil N2O flux was significantly increased 59.1% and 152.0% by warming and 28.4% and 142.4% by reclamation, respectively. Compared with W, WR significantly increased N2O flux by 18.9% and 81.1% during the growing and non-growing seasons, respectively. Soil moisture was negatively correlated to enzymatic activity and N2O flux. Both warming and reclamation promoted soil nitrification by increasing related enzymatic activities that acted to increase the N2O flux. Reclamation resulted in a greater sensitivity of the activity of ammonia monooxygenase and hydroxylamine oxidoreductase to warming, thus enhancing the effects of warming on increasing the N2O flux. Our research indicated that reclamation can additionally increase the effects of warming on N2O emissions for alpine meadows. Therefore, excessive expansion of arable land should be avoided, and new reclamation sites should be planned scientifically, as warming is expected to intensify in the future.

3.
Health Sci Rep ; 5(6): e930, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36381405

ABSTRACT

Background and Aims: To elaborate on the development and characteristics of trauma orthopedic robots and their real curative effect in a clinical application through the collection and analysis of relevant literature and reported clinical results. Method: We conducted the Embase, ScienceDirect, Pubmed, Medline, Wanfang, CNKI, and VIP search of the literature on robotic-assisted surgery in trauma orthopedics in China. We combined search terms with "robotic surgery/artificial intelligence surgery/navigation surgery," "trauma/trauma orthopedics," and "China/Chinese." The exclusion criteria were: (1) articles in languages other than English or Chinese, (2) articles focused on other topics other than robotic-assisted surgery in trauma orthopedics of China, (3) article types were not clinical studies (reviews, basic research, etc.), and (4) articles were not included in the Chinese core journals or science citation index. Authors, type of surgery, robot type, and clinical research results were recorded and analyzed. Results: There were three categories of surgical robots in the clinical application of trauma orthopedics (TiRobot, electromagnetic navigation surgical robots, and small medical robots developed by Beijing Jishuitan Hospital). In terms of blood loss, the fluoroscopy time, and fluoroscopy frequency, most studies found that the robot group was significantly better than the traditional group. Conclusions: Robot-assisted surgery has obvious advantages in accuracy, stability, and reducing intraoperative radiation exposure, but there is no final conclusion about functional recovery.

4.
Sci Total Environ ; 841: 156712, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35709997

ABSTRACT

Gross ecosystem productivity (GEP) plays an important role in global carbon cycling. However, how plant phenology and growth rate regulate GEP under climate change is unclear. Based on an in situ manipulative experiment using open top chambers from 2015 to 2018, we measured whole year warming and spring precipitation addition effects on plant phenology, plant growth rate and GEP. Our results showed that warming delayed plant green up (4 days) and withering (5 days), while spring precipitation addition advanced green up 13 days and did not change withering. Warming delayed the timing of the fast-growing phase 7 days, shortened length of the fast-growing phase 7 days and marginally increased the growth rate. Spring precipitation addition advanced the timing of the fast-growing phase 6 days, but did not change the length of the fast-growing phase or the growth rate. Both whole year warming and spring precipitation addition have not significantly affected growing season mean GEP. GEP is positively correlated with plant growth rate and negatively correlated with the length of the fast-growing phase. We provide an evidence that although warming did not change growing season mean productivity, it delayed plant fast-growing phase. Our findings suggest that management approaches for increasing water availability before the fast-growing phase should be intensified to increase ecosystem carbon uptake and grass supply for animal husbandry in spring.


Subject(s)
Ecosystem , Grassland , Animals , Carbon , Climate Change , Plant Development , Plants , Seasons , Temperature
5.
Sci Total Environ ; 705: 135818, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-31841898

ABSTRACT

Climate change and anthropogenic activities have resulted in increased atmospheric methane (CH4) concentration. Increased nitrogen deposition and precipitation accompanies climate warming and can change soil carbon and nitrogen dynamics and microbial processes and alter CH4 fluxes. To quantify the sink of the vast alpine meadows of the Tibetan Plateau and to examine how precipitation addition (P), warming (W), and nitrogen addition (N) affect CH4 fluxes in alpine meadows, we conducted continuous 3-growing season experiments in an alpine meadow using the static chamber and gas chromatograph method. Soil CH4 samples were collected during the early, peak, and late stages of the growing season from 2015 to 2017. Our results suggested that neither P, W, nor N had an interaction effect on soil CH4 uptake. P significantly increased and decreased the copies number of particulate methane monooxygenase alpha subunit (pmoA) and methyl-coenzyme M reductase alpha subunit (mcrA), respectively. However, P significantly decreased CH4 uptake, particularly under the combined treatment of P and N. Compared with the control, CH4 uptake decreased under P, N, PW, and PN by 50.64%, 6.24%, 39.37%, and 75.06%, respectively, whereas under W and WN CH4 uptake increased by 16.19% and 7.56%, respectively. Soil CH4 uptake was positively correlated with soil temperature and pmoA and negatively correlated with soil moisture and NH4+-N content. CH4 uptake was significantly affected by the sampling period. CH4 uptake was significantly lower rates during peak growing season compared with those during the early and late stages of the growing season. Our results suggest that, (1) CH4 fluxes of alpine grassland ecosystems are more sensitive to P than W or N, and (2) precipitation controls CH4 flux response to increasing nitrogen deposition in alpine meadows on the Tibetan Plateau. Therefore, future research should focus on the response and feedback of CH4 uptake to changes in precipitation.

6.
Huan Jing Ke Xue ; 39(10): 4497-4504, 2018 Oct 08.
Article in Chinese | MEDLINE | ID: mdl-30229596

ABSTRACT

The nitrogen (N) pollution of water is a common global problem. To understand the key production process of N2 O and identify the dominant N sources, Tuojia River, a typical agricultural watershed in a subtropical area, was investigated. To analyze the characteristics of dual nitrate isotopes (δ15N-NO3-,δ18O-NO3-) in water, and N isotope (δ15Norg) and carbon-nitrogen ratio (C/N) in sediment organic matter from four reaches(S1-S4), the stable isotopes method was used. The results showed that the sources of nitrate varied significantly among river segments and were affected by agricultural production and human habitation on the land surface. The average δ15N-NO3- in reaches S1, S2, S3, and S4 were 1.72‰, 2.62‰, 4.10‰, and -1.28‰, respectively, while the average δ18O-NO3- were 2.60‰,-0.06‰, 0.85‰, and -0.62‰. The N in terrestrial soil made a large contribution to nitrate sources in reach S1, while soil N, ammonium N fertilizer, and manure played a main role in reaches S2 and S3. Most of the nitrate came from ammonium N fertilizer in reach S4. We also found that δ15Norg in sediment organic matter ranged from -0.69‰ to 11.21‰, and C/N was between 7.30 and 12.02. The mean δ15Norg in reaches S1-S4 were 1.91‰, 2.96‰, 4.72‰, and 3.23‰, respectively, and the mean C/N values were 10.62, 8.63, 9.05, and 9.22, respectively. Although there were some differences in δ15Norg among reaches S2-S4, the dominant N source was sewage in those reaches. However, soil organic matter was the main N source in the sediments of reach S1. The mean δ18O-NO3- in reaches S1-S4 were -7.01‰,-0.17‰,-0.28‰, and -0.60‰, respectively, indicating that nitrification was the key N2 O production process in these reaches. The ratios of δ15N-NO3- and δ18O-NO3- were 0.66,-41.01,-30.23, and 9.39 in reaches S1-S4, respectively. Finally, we found that there was a positive correlation between NO3--N and δ15N-NO3-. To summarize, the N transformation and N2 O production could be dominated by the nitrification process in Tuojia River.

SELECTION OF CITATIONS
SEARCH DETAIL
...