Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Adv Sci (Weinh) ; : e2400527, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38689508

ABSTRACT

Cisplatin-associated acute kidney injury (AKI) is a severe clinical syndrome that significantly restricts the chemotherapeutic application of cisplatin in cancer patients. Ferroptosis, a newly characterized programmed cell death driven by the lethal accumulation of lipid peroxidation, is widely reported to be involved in the pathogenesis of cisplatin-associated AKI. Targeted inhibition of ferroptosis holds great promise for developing novel therapeutics to alleviate AKI. Unfortunately, current ferroptosis inhibitors possess low bioavailability or perform non-specific accumulation in the body, making them inefficient in alleviating cisplatin-associated AKI or inadvertently reducing the anti-tumor efficacy of cisplatin, thus not suitable for clinical application. In this study, a novel selenium nanomaterial, polyacrylic acid-coated selenium-doped carbon dots (SeCD), is rationally developed. SeCD exhibits high biocompatibility and specifically accumulates in the kidney. Administration of SeCD effectively scavenges broad-spectrum reactive oxygen species and significantly facilitates GPX4 expression by releasing selenium, resulting in strong mitigation of ferroptosis in renal tubular epithelial cells and substantial alleviation of cisplatin-associated AKI, without compromising the chemotherapeutic efficacy of cisplatin. This study highlights a novel and promising therapeutic approach for the clinical prevention of AKI in cancer patients undergoing cisplatin chemotherapy.

2.
J Integr Plant Biol ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38578151

ABSTRACT

By 2050, the global population is projected to reach 9 billion, underscoring the imperative for innovative solutions to increase grain yield and enhance food security. Nanotechnology has emerged as a powerful tool, providing unique solutions to this challenge. Nanoparticles (NPs) can improve plant growth and nutrition under normal conditions through their high surface-to-volume ratio and unique physical and chemical properties. Moreover, they can be used to monitor crop health status and augment plant resilience against abiotic stresses (such as salinity, drought, heavy metals, and extreme temperatures) that endanger global agriculture. Application of NPs can enhance stress tolerance mechanisms in plants, minimizing potential yield losses and underscoring the potential of NPs to raise crop yield and quality. This review highlights the need for a comprehensive exploration of the environmental implications and safety of nanomaterials and provides valuable guidelines for researchers, policymakers, and agricultural practitioners. With thoughtful stewardship, nanotechnology holds immense promise in shaping environmentally sustainable agriculture amid escalating environmental challenges.

3.
Sensors (Basel) ; 24(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38257716

ABSTRACT

In this paper, we investigate the theory of energy distribution when divergent light undergoes harmonic conversion in KDP crystals, and based on this theory, we design and construct a precision measuring instrument for the detuning angle of (KDP) Crystals (MIDC). The device can obtain the detuning angle of the crystal by a single measurement with an average measurement error of 72.78 urad. At the same time, it also has the function of scanning the full aperture of the crystals. Using the MIDC, it is possible to quickly measure the KDP crystal at a single point and quickly scan the crystal detuning angle at full aperture. In addition, we conduct a theoretical study on the variation of detuning angle caused by gravity-influencing factors under online conditions, propose an optimization formula for the offline measurement results of detuning angle, and calculate the optimized values of detuning angle for two kinds of crystals under 45° online conditions. We finally study the error source of the MIDC device, analyze the trend of the influence of positioning errors of the crystal and optical elements on the detuning angle measurement results, and provide theoretical support for the error monitoring and correction of MIDC.

4.
Nat Commun ; 14(1): 7955, 2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38040682

ABSTRACT

Imbalanced Alfvénic turbulence is a universal process playing a crucial role in energy transfer in space,  astrophysical, and laboratory plasmas. A fundamental and long-lasting question about the imbalanced Alfvénic turbulence is how and through which mechanism the energy transfers between scales. Here, we show that the energy transfer of imbalanced Alfvénic turbulence is completed by coherent interactions between Alfvén waves and co-propagating anomalous fluctuations. These anomalous fluctuations are generated by nonlinear couplings instead of linear reflection. We also reveal that the energy transfer of the waves and the anomalous fluctuations is carried out mainly through local-scale and large-scale nonlinear interactions, respectively, responsible for their bifurcated power-law spectra. This work unveils the energy transfer physics of imbalanced Alfvénic turbulence, and advances the understanding of imbalanced Alfvénic turbulence observed by Parker Solar Probe in the inner heliosphere.

5.
Nat Commun ; 14(1): 7392, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37968319

ABSTRACT

Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.


Subject(s)
Ascomycota , Quantum Dots , Verticillium , Disease Resistance/genetics , Reactive Oxygen Species/metabolism , Polyethyleneimine , Gossypium/genetics , Ascomycota/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Plant
6.
Funct Plant Biol ; 50(11): i-iii, 2023 11.
Article in English | MEDLINE | ID: mdl-37947819

ABSTRACT

Plant growth is always negatively affected by abiotic stresses. In the light of current climate trends, global food security will be critically dependent on our ability to minimise penalties imposed by various abiotic stresses (e.g. heat, drought, salinity, flooding, and nutritional disorders etc.) on crop growth and yield. Nanobiotechnology approach is known as a useful tool to improve plant performance under stress. This special issue summarises some recent findings in the field focusing on mechanisms by which externally applied nanoparticles improve plant performance under drought, salinity, and heavy metal stress.


Subject(s)
Metals, Heavy , Plants , Plant Development , Stress, Physiological , Droughts
7.
ACS Nano ; 17(23): 23442-23454, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37991776

ABSTRACT

In this work, we systematically investigated how cell wall and cell wall components affect the delivery of charged carbon quantum dots (CDs, from -34 to +41 mV) to leaf cells of cucumber and Arabidopsis plants. Four different types of leaf cells in cucumber and Arabidopsis were used, i.e., protoplasts (without cell wall), isolated individual cells (cell wall hydrolyzed with pectinase), regenerated individual cells (cell wall regenerated from protoplast), and intact leaf cells (intact cell wall, in planta). Leaf cells were incubated with charged CDs (0.5 mg/mL) for 2 h. Confocal imaging results showed that protoplasts, regenerated individual cells, and leaf cells showed favored uptake of the negatively charged CDs (-34 mV) compared to the PEI (polyethylenimine) coated and positively charged carbon dots [PEI600-CDs (17 mV) and PEI10K-CDs (41 mV)], while in isolated individual cells, the trend is opposite. The results of the content of the cell wall components showed that no significant changes in the total cell wall content were found between isolated individual cells and regenerated individual cells (1.28 vs 1.11 mg/106 cells), while regenerated individual cells showed significant higher pectin content [water-soluble pectin (0.13 vs 0.06 mg/106 cells, P < 0.01), chelator-soluble pectin (0.04 vs 0.01 mg/106 cells, P < 0.01), and alkaline pectin (0.02 vs 0.01 mg/106 cells, P < 0.01)] and significant lower cellulose content (0.13 vs 0.32 mg/106 cells, P < 0.01) than the isolated individual cells. No difference of the hemicellulose content was found between isolated individual cells and regenerated individual cells (0.20 vs 0.21 mg/106 cells). Our results suggest that compared with cellulose and hemicellulose in the cell wall, the pectin is a more important factor referring to the favored uptake of negatively charged carbon dots in leaf cells. Overall, this work provides a method to study the role of cell wall components in the uptake of nanoparticles in plant cells and also points out the importance of understanding the interactions between cell barriers and nanoparticles to design nanoparticles for agricultural use.


Subject(s)
Arabidopsis , Cell Wall , Cucumis sativus , Pectins , Quantum Dots , Arabidopsis/metabolism , Carbon , Cellulose/metabolism , Pectins/metabolism , Plant Leaves/metabolism , Cucumis sativus/metabolism
8.
Nat Commun ; 14(1): 7598, 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37990003

ABSTRACT

Ferroptosis, a newly characterized form of regulated cell death, is induced by excessive accumulation of lipid peroxidation catalyzed by intracellular bioactive iron. Increasing evidence has suggested that ferroptosis is involved in the pathogenesis of several human diseases, including acute liver injury. Targeted inhibition of ferroptosis holds great promise for the clinical treatment of these diseases. Herein, we report a simple and one-pot synthesis of ultrasmall poly(acrylic) acid coated Mn3O4 nanoparticles (PAA@Mn3O4-NPs, PMO), which perform multiple antioxidant enzyme-mimicking activities and can scavenge broad-spectrum reactive oxygen species. PMO could potently suppress ferroptosis. Mechanistically, after being absorbed mainly through macropinocytosis, PMO are largely enriched in lysosomes, where PMO detoxify ROS, inhibit ferritinophagy-mediated iron mobilization and preserve mTOR activation, which collectively confer the prominent inhibition of ferroptosis. Additionally, PMO injection potently counteracts lipid peroxidation and alleviates acetaminophen- and ischaemia/reperfusion-induced acute liver injury in mice. Collectively, our results reveal that biocompatible PMO act as potent ferroptosis inhibitors through multifaceted mechanisms, which ensures that PMO have great translational potential for the clinical treatment of ferroptosis-related acute liver injury.


Subject(s)
Ferroptosis , Nanoparticles , Humans , Animals , Mice , Ferroptosis/physiology , Iron/metabolism , Liver/metabolism , Reactive Oxygen Species/metabolism
9.
ACS Appl Mater Interfaces ; 15(37): 43282-43293, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37672316

ABSTRACT

Soil salinization is one of the global ecological and environmental problems that are tremendously threatening to the sustainable development of agriculture and food supply. In this work, a facile strategy was proposed to enhance the salt stress resistance of plants by preparing salicylic acid (SA)-functionalized mesoporous silica nanocarriers loaded with emamectin benzoate (EB). The obtained nanopesticides demonstrated a particle size of less than 300 nm. As an endogenous plant hormone, the grafting of SA in this nanopesticide system improved the uptake and translocation of pesticides in cucumber plants by 145.06%, and the applications of such nanopesticides enhanced the salt stress resistance of plants. This phenomenon was accounted for by the SA-functionalized nanopesticides increasing the superoxide dismutase and peroxidase activities (640 and 175%, respectively) and reducing the malondialdehyde content (54.10%), correspondingly alleviating the accumulation of reactive oxygen species and cell damage in plants. The above results were also confirmed by Evans blue staining and NBT staining experiments on cucumber leaves. In addition, these nanopesticides exhibited high insecticidal toxicity, and they also demonstrated biosafety toward nontarget organisms due to their sustained release property. Therefore, this work developed a biosafe SA-functionalized nanopesticide system, and these newly developed nanopesticides have potential in the agricultural field for enhancing salt stress resistance of plants.


Subject(s)
Agriculture , Salicylic Acid , Biological Transport , Malondialdehyde , Salicylic Acid/pharmacology , Salt Stress
10.
Appl Opt ; 62(25): 6787-6793, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37706812

ABSTRACT

We propose a method to obtain the detuning angles of a frequency converter by tripling the frequency of a divergent Gaussian beam. The frequency tripling process of the divergent beam was first simulated. It is found that the detuning angles of the frequency converter are linearly related to the position of the maximum light intensity point of the third harmonic laser. The corresponding experiment was conducted, and the results agreed well with the theoretical analysis. This method measures the detuning angles of the frequency converter in only one measurement and within 1 min. The detuning angle measurement errors of KDP and KD*P crystals are less than 10 µrad and 36.5-61.9 µrad, respectively.

12.
Nat Commun ; 14(1): 4327, 2023 07 19.
Article in English | MEDLINE | ID: mdl-37468480

ABSTRACT

Molecular diagnostics for crop diseases can guide the precise application of pesticides, thereby reducing pesticide usage while improving crop yield, but tools are lacking. Here, we report an in-field molecular diagnostic tool that uses a cheap colorimetric paper and a smartphone, allowing multiplexed, low-cost, rapid detection of crop pathogens. Rapid nucleic acid amplification-free detection of pathogenic RNA is achieved by combining toehold-mediated strand displacement with a metal ion-mediated urease catalysis reaction. We demonstrate multiplexed detection of six wheat pathogenic fungi and an early detection of wheat stripe rust. When coupled with a microneedle for rapid nucleic acid extraction and a smartphone app for results analysis, the sample-to-result test can be completed in ~10 min in the field. Importantly, by detecting fungal RNA and mutations, the approach allows to distinguish viable and dead pathogens and to sensitively identify mutation-carrying fungicide-resistant isolates, providing fundamental information for precision crop disease management.


Subject(s)
Basidiomycota , RNA , Pathology, Molecular , Smartphone , Fungi/genetics , Nucleic Acid Amplification Techniques/methods , Basidiomycota/genetics , Mutation
14.
Adv Biol (Weinh) ; 7(7): e2200317, 2023 07.
Article in English | MEDLINE | ID: mdl-36949542

ABSTRACT

Poly (acrylic) acid coated Mn3O4 nanoparticles (PAA@Mn3 O4 nanoparticles (PMO, 11.02 nm, -28.93 mV)) are synthesized to investigate whether they can help to improve maize drought tolerance and the relevant mechanisms behind this. In planta experimental results show that under drought (15% PEG 6000, polyethylene glycol, mimicking drought stress, 96 h), compared with the control plants, 500 mg L-1 PMO (root application, 96 h) improves maize drought tolerance, showing an increase of root length (21.6%), shoot length (21.2%), fresh weight (7.8%) and total protein (67.2%) content. In addition, PMO significantly decreases the malondialdehyde (MDA) content by 74.7% in maize under drought, compared with the control group. Further, PMO treated maize root apex shows significantly increased mitotic index (MI, 35.5%), and decreased hydrogen peroxide (40.9%). Compared with the control under drought (15% PEG, 96 h), thr root apex of maize plants treated with PMO (500 mg L-1 , root application, 96 h) have significantly lower level of H2 O2 . Overall, the results show that PMO can alleviate drought-inhibited cell mitosis activities via maintaining ROS (reactive oxygen species) homeostasis. In this study, it is not only shown that PMO can be a good nano-regulator candidate to improve maize drought tolerance, but also that PMO has potential to modulate plant cell mitosis activities.


Subject(s)
Drought Resistance , Manganese Compounds , Metal Nanoparticles , Zea mays , Zea mays/physiology , Manganese Compounds/pharmacology , Oxides/pharmacology , Mitosis , Plant Roots , Reactive Oxygen Species/metabolism , Malondialdehyde , Hydrogen Peroxide , Homeostasis
15.
Chemosphere ; 310: 136911, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36270526

ABSTRACT

Salt and drought stress are major environmental issues world-widely. These stresses can result in failures of seed germination, limiting agricultural production. New approaches are needed to increase crop production, ensuring food safety, quality, and agriculture sustainability. Nanopriming (priming seeds with nanomaterials) is an emerging seed technology improving crop production under the drastic climate change associated with stress factors. The present review not only provided an overview of nanopriming achieved salt and drought tolerance but also tried to discuss the behind mechanisms. We argued that the physico-chemical properties of the nanomaterials are key factors affecting their negative or positive effects on seed germination in terms of seed nanopriming. Furthermore, we highlighted the possible critical role of seed coat anatomy in effective nanopriming, in terms of saving costs and reducing biosafety issues. This review aims to help researchers to better understand and follow this fast-developing, cost-effective, and environmentally friendly research area.


Subject(s)
Germination , Nanostructures , Droughts , Salinity , Seeds , Nanostructures/toxicity , Sodium Chloride/pharmacology
16.
Eur Radiol ; 33(4): 2561-2573, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36350393

ABSTRACT

OBJECTIVES: This study aims to investigate and develop imaging biomarkers for the diagnosis of cancer-associated cachexia based on the organ and tissue-specific abnormal metabolisms measured by fluorine-18-fluorodeoxyglucose (18F-FDG) PET/CT. METHODS: FDG PET/CT data from 390 cancer patients were analyzed retrospectively. Patients were divided into a development cohort and a validation cohort. Cachexia was defined as weight loss > 5% in 6 months or BMI < 20 and weight loss > 2%. According to the above definitions, patients were divided into cachexia and non-cachexia groups. Results of the clinical laboratory tests for metabolic levels and organ and tissue-specific FDG uptake obtained from the cachexia and non-cachexia groups were compared statistically. Logistic regression analysis was performed to identify independent variables associated with cachexia in the development cohort for generating the regression model. The performance of the model was tested using the data from a validation cohort and evaluated by area under the receiver operating characteristic curve (AUC). RESULTS: Based on the data from the development cohort of 286 patients and a validation cohort of 104 patients, it is found that age, white blood cell count, peak standardized uptake value (SUV) of the liver, and minimum SUV of lean body mass of visceral fat and subcutaneous fat were independently associated with cachexia. The model incorporating these variables reached an AUC of 0.777 (95% confidence interval (CI): 0.721, 0.833) in the development cohort and an AUC of 0.729 (95% CI: 0.629, 0.829) in the validation cohort. CONCLUSION: Organ and tissue-specific abnormal glucose metabolism as measured by PET/CT can be used as a biomarker for cancer-associated cachexia. KEY POINTS: • Patients with cancer-associated cachexia have reduced FDG uptake in the liver and increased FDG uptake in visceral fat and subcutaneous fat. • FDG uptake of the liver, visceral fat, and subcutaneous fat can be independent risk factors for identifying cancer-associated cachexia. • Cancer-associated cachexia can be classified using the model that incorporates age, white blood cell count, FDG uptake of the liver, and visceral and subcutaneous fat can diagnose with an AUC of 0.729.


Subject(s)
Fluorodeoxyglucose F18 , Neoplasms , Humans , Positron Emission Tomography Computed Tomography/methods , Radiopharmaceuticals , Retrospective Studies , Neoplasms/complications , Biomarkers , Liver , Obesity , Weight Loss
18.
Nutrients ; 14(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35893867

ABSTRACT

BACKGROUND: Up to 80% of pancreatic cancer patients suffer from cachexia. White adipose tissue (WAT) browning caused by the tumorigenicity and progression aggravates the cancer-associated cachexia (CAC). Cancer-initiated changes in the protein-38 mitogen-activated protein kinases (p38 MAPK) pathway are likely involved in the development of CAC. METHODS: p38 MAPK inhibitors, VCP979 or SB203580, were used in the in vitro and in vivo models of pancreatic cancer cachexia. Expression of uncoupling protein 1 (UCP1) in the p38 MARK pathway and the properties and level of white adipocytes were analyzed and correlated to browning, followed by immunohistochemistry and Western blotting validations. Changes in the volume and fat fraction of WAT in animals were monitored by magnetic resonance imaging (MRI). RESULTS: The size of white adipocytes was increased after being treated with the p38 MAPK inhibitors, along with increase in the MRI-measured volume and fat fraction of WAT. Comparing two p38 MAPK inhibitors, the p38α subunit-specific inhibitor VCP979 had a better therapeutic effect than SB203580, which targets both p38α and ß subunits. CONCLUSIONS: Blockade of p38 MAPK reduced the WAT browning that contributes to CAC. Thus, p38 MARK inhibitors can potentially be used as a therapy for treating CAC. Non-invasive MRI can also be applied to assess the progression and treatment responses of CAC.


Subject(s)
Mitogen-Activated Protein Kinase 14 , Pancreatic Neoplasms , Adipose Tissue, Brown/metabolism , Adipose Tissue, White/metabolism , Animals , Cachexia/drug therapy , Cachexia/etiology , Cachexia/metabolism , Magnetic Resonance Imaging , Mitogen-Activated Protein Kinase 14/metabolism , Pancreatic Neoplasms/complications , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , p38 Mitogen-Activated Protein Kinases/metabolism
19.
Glob Chall ; 6(7): 2200025, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35860396

ABSTRACT

Soil salinity is a major issue limiting efficient crop production. Seed priming with nanomaterials (nanopriming) is a cost-effective technology to improve seed germination under salinity; however, the underlying mechanisms still need to be explored. Here, polyacrylic acid coated nanoceria (cerium oxide nanoparticles) (PNC, 9.2 nm, -38.7 mV) are synthesized and characterized. The results show that under salinity, PNC priming significantly increases rapeseed shoot length (41.5%), root length (93%), and seedling dry weight (78%) compared to the no-nanoparticle (NNP) priming group. Confocal imaging results show that compared with NNP group, PNC priming significantly reduces reactive oxygen species (ROS) level in leaf (94.3% of H2O2, 56.4% of •O2 -) and root (38.4% of H2O2, 41.3% of •O2 -) of salt stressed rapeseed seedlings. Further, the results show that compared with the NNP group, PNC priming not only increases salicylic acid (SA) content in shoot (51.3%) and root (78.4%), but also upregulates the expression of SA biosynthesis related genes in salt stressed rapeseed. Overall, PNC nanopriming improved rapeseed salt tolerance is associated with both the increase of ROS scavenging ability and the increase of salicylic acid. The results add more information to understand the complexity of mechanisms behind nanoceria priming improved plant salt tolerance.

20.
Plant Commun ; 3(6): 100346, 2022 11 14.
Article in English | MEDLINE | ID: mdl-35689377

ABSTRACT

Nano-enabled agriculture is a topic of intense research interest. However, our knowledge of how nanoparticles enter plants, plant cells, and organelles is still insufficient. Here, we discuss the barriers that limit the efficient delivery of nanoparticles at the whole-plant and single-cell levels. Some commonly overlooked factors, such as light conditions and surface tension of applied nano-formulations, are discussed. Knowledge gaps regarding plant cell uptake of nanoparticles, such as the effect of electrochemical gradients across organelle membranes on nanoparticle delivery, are analyzed and discussed. The importance of controlling factors such as size, charge, stability, and dispersibility when properly designing nanomaterials for plants is outlined. We mainly focus on understanding how nanoparticles travel across barriers in plants and plant cells and the major factors that limit the efficient delivery of nanoparticles, promoting a better understanding of nanoparticle-plant interactions. We also provide suggestions on the design of nanomaterials for nano-enabled agriculture.


Subject(s)
Nanoparticles , Nanostructures , Nanoparticles/metabolism , Plants/metabolism , Agriculture , Biological Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...