Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Healthc Eng ; 2018: 2908517, 2018.
Article in English | MEDLINE | ID: mdl-29849996

ABSTRACT

Automatic image segmentation and feature analysis can assist doctors in the treatment and diagnosis of diseases more accurately. Automatic medical image segmentation is difficult due to the varying image quality among equipment. In this paper, the automatic method employed image multiscale intensity texture analysis and segmentation to solve this problem. In this paper, firstly, SVM is applied to identify common pneumothorax. Features are extracted from lung images with the LBP (local binary pattern). Then, classification of pneumothorax is determined by SVM. Secondly, the proposed automatic pneumothorax detection method is based on multiscale intensity texture segmentation by removing the background and noises in chest images for segmenting abnormal lung regions. The segmentation of abnormal regions is used for texture transformed from computing multiple overlapping blocks. The rib boundaries are identified with Sobel edge detection. Finally, in obtaining a complete disease region, the rib boundary is filled up and located between the abnormal regions.


Subject(s)
Pneumothorax/diagnostic imaging , Support Vector Machine , Tomography, X-Ray Computed/methods , Adolescent , Adult , Aged , Female , Humans , Lung/diagnostic imaging , Male , Middle Aged , Young Adult
2.
J Med Biol Eng ; 35(6): 724-734, 2015.
Article in English | MEDLINE | ID: mdl-26692830

ABSTRACT

Parkinson's disease is a progressive neurodegenerative disorder that has a higher probability of occurrence in middle-aged and older adults than in the young. With the use of a computer-aided diagnosis (CAD) system, abnormal cell regions can be identified, and this identification can help medical personnel to evaluate the chance of disease. This study proposes a hierarchical correlation histogram analysis based on the grayscale distribution degree of pixel intensity by constructing a correlation histogram, that can improves the adaptive contrast enhancement for specific objects. The proposed method produces significant results during contrast enhancement preprocessing and facilitates subsequent CAD processes, thereby reducing recognition time and improving accuracy. The experimental results show that the proposed method is superior to existing methods by using two estimation image quantitative methods of PSNR and average gradient values. Furthermore, the edge information pertaining to specific cells can effectively increase the accuracy of the results.

SELECTION OF CITATIONS
SEARCH DETAIL