Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Type of study
Publication year range
1.
Mucosal Immunol ; 17(1): 13-24, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37805143

ABSTRACT

Air pollution significantly impacts the aggravation of asthma. Exposure to acrylamide, a volatile organic compound in tobacco smoke, is associated with elevated risks of allergy-related outcomes among active smokers. As group 2 innate lymphoid cells (ILC2s) can act as an environmental sensor and significantly contribute to protease allergen-induced lung inflammation, we aimed to elucidate the causal relationship and how inhaled acrylamide worsens allergic lung inflammation via ILC2s. Intranasal acrylamide exposure at nanomolar levels significantly enhanced allergen-induced or recombinant mouse interleukin-33-induced lung inflammation in C57BL/6 mice or Rag1-/- mice, respectively. The cardinal features of lung inflammation included accumulated infiltration of ILC2s and eosinophils. Transcriptomic analysis revealed a gene expression pattern associated with proliferation-related pathways in acrylamide-treated ILC2s. Western blotting revealed significantly higher expression of Ras and phospho-Erk in acrylamide-treated ILC2s than the control, suggesting Ras-Erk signaling pathway involvement. Ex vivo and in vitro analysis showed that acrylamide treatment mainly increased Ki-67+ ILC2s and the cell number of ILC2s whereas PD98059, a highly selective Erk inhibitor, effectively counteracted the acrylamide effect. Intratracheal administration of acrylamide-treated ILC2s significantly enhanced eosinophil infiltration in Rag1-/- mice. This study suggests that airborne acrylamide may enhance the severity of allergen-induced airway eosinophilic inflammation, partly via altering ILC2 proliferative activity.


Subject(s)
Air Pollutants , Pneumonia , Pulmonary Eosinophilia , Mice , Animals , Immunity, Innate , Allergens , Lymphocytes , Mice, Inbred C57BL , Acrylamides , Homeodomain Proteins/genetics , Lung , Interleukin-33/metabolism , Cytokines/metabolism
2.
Biomed Pharmacother ; 167: 115619, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37804813

ABSTRACT

Kurarinone, a major lavandulyl flavanone found in the roots of Sophora flavescens aiton, has been reported to exhibit anti-inflammatory and anti-oxidative activities in lipopolysaccharide (LPS)-induced macrophages; however, the effects of kurarinone on the activation of NLRP3 inflammasome and the protective effects against sepsis have not been well investigated. In this study, we aimed to investigate the impacts of kurarinone on NLRP3 inflammasome activation in lipopolysaccharide (LPS)-induced macrophages and its protective effects against sepsis in vivo. Secretion of pro-inflammatory cytokines, activation of MAPKs and NF-κB signaling pathways, formation of NLRP3 inflammasome, and production of reactive oxygen species (ROS) by LPS-induced macrophages were examined; additionally, in vivo LPS-induced endotoxemia model was used to investigate the protective effects of kurarinone in sepsis-induced damages. Our experimental results demonstrated that kurarinone inhibited the expression of iNOS and COX-2, suppressed the phosphorylation of MAPKs, attenuated the production of TNF-α, IL-6, nitric oxide (NO) and ROS, repressed the activation of the NLRP3 inflammasome, and impeded the maturation and secretion of IL-1ß and caspase-1. Furthermore, the administration of kurarinone attenuated the infiltration of neutrophils in the lung, kidneys and liver, reduced the expression of organ damage markers, and increased the survival rate in LPS-challenged mice. Collectively, our study demonstrated that kurarinone can protect against LPS-induced sepsis damage and exert anti-inflammatory effects via inhibiting MAPK/NF-κB pathways, attenuating NLRP3 inflammasome formation, and preventing intracellular ROS accumulation, suggesting that kurarinone might have potential for treating sepsis and inflammation-related diseases.


Subject(s)
Inflammasomes , Sepsis , Mice , Animals , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Lipopolysaccharides/toxicity , Reactive Oxygen Species/metabolism , NF-kappa B/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Sepsis/chemically induced , Sepsis/drug therapy
3.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108458

ABSTRACT

Microglia-associated neuroinflammation is recognized as a critical factor in the pathogenesis of neurodegenerative diseases; however, there is no effective treatment for the blockage of neurodegenerative disease progression. In this study, the effect of nordalbergin, a coumarin isolated from the wood bark of Dalbergia sissoo, on lipopolysaccharide (LPS)-induced inflammatory responses was investigated using murine microglial BV2 cells. Cell viability was assessed using the MTT assay, whereas nitric oxide (NO) production was analyzed using the Griess reagent. Secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) was detected by the ELISA. The expression of inducible NO synthase (iNOS), cyclooxygenase (COX)-2, mitogen-activated protein kinases (MAPKs) and NLRP3 inflammasome-related proteins was assessed by Western blot. The production of mitochondrial reactive oxygen species (ROS) and intracellular ROS was detected using flow cytometry. Our experimental results indicated that nordalbergin ≤20 µM suppressed NO, IL-6, TNF-α and IL-1ß production; decreased iNOS and COX-2 expression; inhibited MAPKs activation; attenuated NLRP3 inflammasome activation; and reduced both intracellular and mitochondrial ROS production by LPS-stimulated BV2 cells in a dose-dependent manner. These results demonstrate that nordalbergin exhibits anti-inflammatory and anti-oxidative activities through inhibiting MAPK signaling pathway, NLRP3 inflammasome activation and ROS production, suggesting that nordalbergin might have the potential to inhibit neurodegenerative disease progression.


Subject(s)
Lipopolysaccharides , Neurodegenerative Diseases , Mice , Animals , Lipopolysaccharides/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Inflammasomes/metabolism , Microglia/metabolism , Reactive Oxygen Species/metabolism , Neuroinflammatory Diseases , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Neurodegenerative Diseases/metabolism , Signal Transduction , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism
4.
Am J Chin Med ; 51(4): 1019-1039, 2023.
Article in English | MEDLINE | ID: mdl-37120705

ABSTRACT

Prostate cancer (PCa) is the second most prevalent cancer in men worldwide. The majority of PCa incidences eventually progress to castration-resistant PCa (CRPC), thereby establishing an urgent need for new effective therapeutic strategies. This study aims to examine the effects of morusin, a prenylated flavonoid isolated from Morus alba L., on PCa progression and identify the regulatory mechanism of morusin. Cell growth, cell migration and invasion, and the expression of EMT markers were examined. Cycle progression and cell apoptosis were examined using flow cytometry and a TUNEL assay, while transcriptome analysis was performed using RNA-seq with results being further validated using real-time PCR and western blot. A xenograft PCa model was used to examine tumor growth. Our experimental results indicated that morusin significantly attenuated the growth of PC-3 and 22Rv1 human PCa cells; moreover, morusin significantly suppressed TGF-[Formula: see text]-induced cell migration and invasion and inhibited EMT in PC-3 and 22Rv1 cells. Significantly, morusin treatment caused cell cycle arrest at the G2/M phase and induced cell apoptosis in PC-3 and 22Rv1 cells. Morusin also attenuated tumor growth in a xenograft murine model. The results of RNA-seq indicated that morusin regulated PCa cells through the Akt/mTOR signaling pathway, while our western blot results confirmed that morusin suppressed phosphorylation of AKT, mTOR, p70S6K, and downregulation of the expression of Raptor and Rictor in vitro and in vivo. These results suggest that morusin has antitumor activities on regulating PCa progression, including migration, invasion, and formation of metastasis, and might be a potential drug for CRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Prostatic Neoplasms , Male , Humans , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Cell Line, Tumor , Signal Transduction/genetics , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Flavonoids/pharmacology , Flavonoids/therapeutic use , TOR Serine-Threonine Kinases/metabolism , Cell Proliferation/genetics , Apoptosis/genetics , Cell Movement
5.
Biomed Pharmacother ; 156: 113929, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36411619

ABSTRACT

Bladder cancer is one of the most common malignancies of the male genitourinary urinary system. Protodioscin is a steroidal saponin with anti-cancer effects on several types of cancers; however, the anti-cancer activities of protodioscin on bladder cancer have not yet been investigated. Therefore, we aimed to examine the anti-cancer effects of protodioscin on bladder cancer. Two types of bladder cancer cell lines, non-muscle-invasive 5637 cells and muscle-invasive T24 cells, were used to evaluate the effects of protodioscin on cell growth, migration, invasion and epithelial-mesenchymal transition(EMT) marker expressions. Transcriptome analysis was performed by RNA-seq and validated using real-time PCR and western blot; additionally, an in vivo xenograft animal model was established and the anti-tumor effects of protodioscin were tested. Our results demonstrated that protodioscin inhibited cell proliferation, migration, motility and invasion on 5637 and T24 cells. Additionally, protodioscin also induced cell apoptosis and arrested the progression of cell cycle at G2 phase in bladder cancer cells. Moreover, protodioscin inhibited EMT through increased protein expression of E-cadherin and decreased protein expression of N-cadherin and vimentin. RNA-seq analysis indicated that protodioscin regulated mitogen-activated protein kinase(MAPK) and phosphoinositide 3-kinases(PI3K)/protein kinase B(AKT)/mammalian target of rapamycin(mTOR) signaling pathways as further verified by Western blot. Furthermore, protodioscin significantly inhibited tumor growth in vivo. Our results indicated that protodioscin inhibits cell growth, migration and invasion and induces apoptosis and G2 phase cell cycle arrest by activated p38 and JNK signaling pathways in bladder cancer cells, suggesting that protodioscin could be an effective agent for bladder cancer treatment.


Subject(s)
Saponins , Urinary Bladder Neoplasms , Humans , Male , Animals , Urinary Bladder Neoplasms/drug therapy , Saponins/pharmacology , Saponins/therapeutic use , Cell Movement , Apoptosis , Phosphatidylinositol 3-Kinases , Signal Transduction , Mammals
6.
J Inflamm Res ; 15: 5347-5359, 2022.
Article in English | MEDLINE | ID: mdl-36131784

ABSTRACT

Purpose: Neurodegenerative diseases are associated with neuroinflammation along with activation of microglia and oxidative stress, but currently lack effective treatments. Punicalagin is a natural bio-sourced product that exhibits anti-inflammatory effects on several chronic diseases; however, the anti-inflammatory and anti-oxidative effects on microglia have not been well examined. This study aimed to investigate the effects of punicalagin on LPS-induced inflammatory responses, NLRP3 inflammasome activation, and the production of ROS using murine microglia BV2 cells. Methods: BV2 cells were pre-treated with punicalagin following LPS treatment to induce inflammation. The secretion of NO and PGE2 was analyzed by Griess reagent and ELISA respectively, while the expressions of iNOS, COX-2, STAT3, ERK, JNK, and p38 were analyzed using Western blotting, the production of IL-6 was measured by ELISA, and the activity of NF-κB was detected using promoter reporter assay. To examine whether punicalagin affects NLRP3 inflammasome activation, BV2 cells were stimulated with LPS and then treated with ATP or nigericin. The secretion of IL-1ß was measured by ELISA. The expressions of NLRP3 inflammasome-related proteins and phospho IκBα/IκBα were analyzed using Western blotting. The production of intracellular and mitochondrial ROS was analyzed by flow cytometry. Results: Our results showed that punicalagin attenuated inflammation with reduction of pro-inflammatory mediators and cytokines including iNOS, COX-2, IL-1ß, and reduction of IL-6 led to inhibition of STAT3 phosphorylation by LPS-induced BV2 cells. Punicalagin also suppressed the ERK, JNK, and p38 phosphorylation, attenuated NF-κB activity, inhibited the activation of the NLRP3 inflammasome, and reduced the production of intracellular and mitochondrial ROS by LPS-induced BV2 cells. Conclusion: Our results demonstrated that punicalagin attenuated LPS-induced inflammation through suppressing the expression of iNOS and COX-2, inhibited the activation of MAPK/NF-κB signaling pathway and NLRP3 inflammasome, and reduced the production of ROS in microglia, suggesting that punicalagin might have the potential in treating neurodegenerative diseases.

7.
Front Immunol ; 13: 581854, 2022.
Article in English | MEDLINE | ID: mdl-35663974

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP), a common plasticizer, is a ubiquitous environmental pollutant that can disrupt endocrine function. Epidemiological studies suggest that chronic exposure to DEHP in the environment is associated with the prevalence of childhood allergic diseases; however, the underlying causal relationship and immunological mechanism remain unclear. This study explored the immunomodulatory effect of DEHP on allergic lung inflammation, while particularly focusing on the impact of DEHP and its metabolite on dendritic cell differentiation and activity of peroxisome proliferator-activated receptor gamma (PPARγ). The results showed that exposure to DEHP at a human tolerable daily intake dose exacerbated allergic lung inflammation in mice. Ex vivo flow cytometric analysis revealed that DEHP-exposed mice displayed a significantly decreased number of CD8α+ dendritic cells (DCs) in spleens and DC progenitors in the bone marrow, as well as, less interleukin-12 production in splenic DCs and increased T helper 2 polarization. Pharmacological experiments showed that mono-(2-ethylhexyl) phthalate (MEHP), the main metabolite of DEHP, significantly hampered the differentiation of CD8α+ DCs from Fms-like tyrosine kinase 3 ligand-differentiated bone marrow culture, by modulating PPARγ activity. These results suggested that chronic exposure to DEHP at environmentally relevant levels, promotes allergic lung inflammation, at least in part, by altering DC differentiation through the MEHP-PPARγ axis. This study has crucial implications for the interaction(s) between environmental pollutants and innate immunity, with respect to the development of allergic asthma.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Pneumonia , Animals , Cell Differentiation , Diethylhexyl Phthalate/analogs & derivatives , Diethylhexyl Phthalate/toxicity , Mice , PPAR gamma/metabolism , Phthalic Acids
8.
Cancer Cell Int ; 22(1): 180, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35524261

ABSTRACT

BACKGROUND: Immunodeficiencies are genetic diseases known to predispose an individual to cancer owing to defective immunity towards malignant cells. However, the link between immunodeficiency and prostate cancer progression remains unclear. Therefore, the aim of this study was to evaluate the effects of common genetic variants among eight immunodeficiency pathway-related genes on disease recurrence in prostate cancer patients treated with radical prostatectomy. METHODS: Genetic and bioinformatic analyses on 19 haplotype-tagging single-nucleotide polymorphisms in eight immunodeficiency pathway-related genes were conducted in 458 patients with prostate cancer after receiving radical prostatectomy. Furthermore, the TNFRSF13B was knocked down in 22Rv1 and PC-3 human prostate cancer cell lines via transfecting short hairpin RNAs and cell proliferation and colony formation assays were performed. The molecular mechanisms underlying the effects of TNFRSF13B were further explored by microarray gene expression profiling. RESULTS: TNFRSF13B rs4792800 was found to be significantly associated with biochemical recurrence even after adjustment for clinical predictors and false discovery rate correction (adjusted hazard ratio 1.78, 95% confidence interval 1.16-2.71, p = 0.008), and the G allele was associated with higher TNFRSF13B expression (p = 0.038). Increased TNFRSF13B expression suggested poor prognosis in four independent prostate cancer datasets. Furthermore, silencing TNFRSF13B expression resulted in decreased colony formation of 22Rv1 and PC-3 cells through modulating the cell cycle and p53 signalling pathways. CONCLUSIONS: The present study suggests the potential role of immunodeficiency pathway-related genes, primarily TNFRSF13B, in prostate cancer progression.

9.
Eur J Pharmacol ; 923: 174929, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35364071

ABSTRACT

3-bromopyruvic acid (3-BP), a small molecule alkylating agent, has been emerged as a glycolytic inhibitor with anticancer activities. However, the effects of 3-BP on the growth and metastasis in prostate cancer have not been well investigated. Here we investigated the anti-cancer effects of 3-BP on prostate cancer in vitro and in vivo. Cell growth, apoptosis, migration, motility, and invasion were examined. The tumor growth ability was determined using a xenograft murine model. Transcriptome analysis using RNA-seq was performed to explore the mechanism of action of 3-BP. Our experimental results showed that 3-BP effectively inhibits prostate cancer cell growth, especially in castration-resistant prostate cancer (CRPC) cells. Moreover, 3-BP induces apoptosis and suppresses cell migration, motility, epithelial-mesenchymal transition (EMT), and invasion in CRPC cells. In addition, 3-BP also attenuates tumor growth in a xenograft murine model. Through transcriptome analysis using RNA-seq, 3-BP significantly regulates the cell cycle pathway and decreases the expression of downstream cycle cycle-associated genes in CRPC cells. The results of cell cycle analysis indicated that 3-BP arrests cell cycle progression at G2/M in CRPC cells. These results suggest that 3-BP has the potential in inhibiting CRPC progression and might be a promising drug for CRPC treatment.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Humans , Male , Mice , Prostatic Neoplasms, Castration-Resistant/drug therapy , Pyruvates , Xenograft Model Antitumor Assays
10.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34681270

ABSTRACT

Acute lung injury (ALI) is a high mortality disease with acute inflammation. Corylin is a compound isolated from the whole plant of Psoralea corylifolia L. and has been reported to have anti-inflammatory activities. Herein, we investigated the therapeutic potential of corylin on lipopolysaccharides (LPS)-induced ALI, both in vitro and in vivo. The levels of proinflammatory cytokine secretions were analyzed by ELISA; the expressions of inflammation-associated proteins were detected using Western blot; and the number of immune cell infiltrations in the bronchial alveolar lavage fluid (BALF) were detected by multicolor flow cytometry and lung tissues by hematoxylin and eosin (HE) staining, respectively. Experimental results indicated that corylin attenuated LPS-induced IL-6 production in human bronchial epithelial cells (HBEC3-KT cells). In intratracheal LPS-induced ALI mice, corylin attenuated tissue damage, suppressed inflammatory cell infiltration, and decreased IL-6 and TNF-α secretions in the BALF and serum. Moreover, it further inhibited the phosphorylation of mitogen-activated protein kinases (MAPKs), including p-JNK, p-ERK, p-p38, and repressed the activation of signal transducer and activator of transcription 3 (STAT3) in lungs. Collectively, our results are the first to demonstrate the anti-inflammatory effects of corylin on LPS-induced ALI and suggest corylin has significant potential as a novel therapeutic agent for ALI.

11.
Pharmaceuticals (Basel) ; 14(6)2021 Jun 18.
Article in English | MEDLINE | ID: mdl-34207356

ABSTRACT

Piplartine (or Piperlongumine) is a natural alkaloid isolated from Piper longum L., which has been proposed to exhibit various biological properties such as anti-inflammatory effects; however, the effect of piplartine on sepsis has not been examined. This study was performed to examine the anti-inflammatory activities of piplartine in vitro, ex vivo and in vivo using murine J774A.1 macrophage cell line, peritoneal macrophages, bone marrow-derived macrophages and an animal sepsis model. The results demonstrated that piplartine suppresses iNOS and COX-2 expression, reduces PGE2, TNF-α and IL-6 production, decreases the phosphorylation of MAPKs and NF-κB and attenuates NF-κB activity by LPS-activated macrophages. Piplartine also inhibits IL-1ß production and suppresses NLRP3 inflammasome activation by LPS/ATP- and LPS/nigericin-activated macrophages. Moreover, piplartine reduces the production of nitric oxide (NO) and TNF-α, IL-6 and IL-1ß, decreases LPS-induced tissue damage, attenuates infiltration of inflammatory cells and enhances the survival rate. Collectively, these results demonstrate piplartine exhibits anti-inflammatory activities in LPS-induced inflammation and sepsis and suggest that piplartine might have benefits for sepsis treatment.

12.
J Hazard Mater ; 166(2-3): 686-94, 2009 Jul 30.
Article in English | MEDLINE | ID: mdl-19144461

ABSTRACT

Gold used to be considered to have no catalytic activity. In the 1980s, however, Masatake Haruta found that nano-sized gold particles supported by metal oxides can catalyze the oxidation of carbon monoxide. This work examines the oxidation of carbon monoxide (CO) and the adsorption/desorption behaviors on nano-sized gold catalyst at room temperature by diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). Carbonate, bicarbonate and carboxylate were observed. The effects of various factors (relative humidity, CO gas concentration, and total surface area) on the CO conversion efficiency were studied using the response surface designs in the Experiment Design Method. The results indicate that the conversion efficiency of CO was high when the ratio of CO and O(2) was close to 1:1. The gas concentration is the most important factor, followed by the weight of gold catalyst, followed by relative humidity. An appropriate humidity enhances the catalytic reaction in the long-term.


Subject(s)
Carbon Monoxide/chemistry , Metal Nanoparticles/chemistry , Oxygen/chemistry , Adsorption , Bicarbonates , Carbonates , Carboxylic Acids , Catalysis , Gold , Humidity , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...