Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Genomics ; 64: 100956, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35811106

ABSTRACT

Shewanella eurypsychrophilus YLB-09 is a psychrophilic and piezotolerant bacterium that was isolated from 2699 m deep sea sediments of the Southwest Indian Ocean. The complete genome sequence of the strain Shewanella eurypsychrophilus YLB-09 was analyzed. The genome of Shewanella eurypsychrophilus YLB-09 contained one single circular chromosome 6,225,487 base pairs with a 43.6 mol% G + C content of 52 ribosomal RNA genes and 5124 protein-coding genes. YLB-09 has the largest number of genes related to energy production and conversion among 22 available complete genomes of Shewanella genus. Meanwhile, a large quantity of genes encoding flagellum/fimbrial-related proteins and two major secondary metabolic gene clusters were found in YLB-09. These data could provide insights into the mechanism of this strain in adapting to deep sea extreme environments.


Subject(s)
Shewanella , DNA, Bacterial/genetics , Genomics , Geologic Sediments/microbiology , Phylogeny , RNA, Ribosomal, 16S/genetics , Seawater/microbiology , Sequence Analysis, DNA , Shewanella/genetics
2.
Curr Microbiol ; 79(4): 95, 2022 Feb 12.
Article in English | MEDLINE | ID: mdl-35150317

ABSTRACT

Microbes living in extreme environments often adopt strategies for survival, however, only a few studies have examined the adaptive mechanism of deep-sea bacteria in in-situ environments. In this study, transcriptomic data of the deep-sea piezotolerant and psychrotolerant actinomycete Microbacterium sediminis YLB-01 under the conditions of NPNT (normal temperature and pressure: 28 °C, 0.1 MPa), HPNT (normal temperature and high pressure: 28 °C, 30 MPa), NPLT (low temperature and atmospheric pressure: 4 °C, 0.1 MPa) and HPLT (low temperature and high pressure: 4 °C, 30 MPa) were examined and compared. Transcriptome results showed that M. sediminis YLB-01 responds to deep-sea low temperature under high-pressure environments by upregulating the ABC transport system, DNA damage repair response, pentose phosphate pathway, amino acid metabolism and fatty acid metabolism, while down-regulating division, oxidative phosphorylation, the TCA cycle, pyruvate metabolism, ion transport and peptidoglycan biosynthesis. Seven key genes specifically expressed under HPLT conditions were screened, and these genes are present in many strains that are tolerant to low temperatures and high pressures. This study provides transcription level insights into the tolerance mechanisms of M. sediminis YLB-01 in a simulated deep-sea in situ environment.


Subject(s)
Actinomycetales , Transcriptome , Actinomycetales/genetics , Hydrostatic Pressure , Microbacterium , Temperature
3.
Arch Microbiol ; 203(6): 3279-3285, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33860341

ABSTRACT

A halophilic, Gram-staining-negative, rod-shaped, flagellated and motile bacterium, strain QX-1 T, was isolated from deep-sea sediment at a depth of 3332 m in the southwestern Indian Ocean. Strain QX-1 T growth was observed at 4-50 °C (optimum 37 °C), pH 5.0-11.0 (optimum pH 7.0), 3-25% NaCl (w/v; optimum 7%), and it did not grow without NaCl. A phylogenetic analysis based on the 16S rRNA gene placed strain QX-1 T in the genus Halomonas and most closely related to Halomonas sulfidaeris (97.9%), Halomonas zhaodongensis (97.8%), Halomonas songnenensis (97.6%), Halomonas hydrothermalis (97.4%), Halomonas subterranea (97.3%), Halomonas salicampi (97.1%), and Halomonas arcis (97.0%). DNA-DNA hybridization (< 26.5%) and average nucleotide identity values (< 83.5%) between strain QX-1 T and the related type strains meet the accepted criteria for a new species. The principal fatty acids (> 10%) of strain QX-1 T are C16:0 (25.5%), C17:0 cyclo (14.0%), C19:0 cyclo ω8c (18.7%), and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c, 18.1%). The polar lipids of strain QX-1 T are mainly diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipid, unidentified aminophospholipid, and five unidentified lipids. The main respiratory quinone is Q-9. The G + C content of its chromosomal DNA is 54.4 mol%. Its fatty acid profile, respiratory quinones, and G + C content also support the placement of QX-1 T in the genus Halomonas. These phylogenetic, phenotypic, and chemotaxonomic analyses indicate that QX-1 T is a novel species, for which the name Halomonas maris is proposed. The type strain is QX-1 T (= MCCC 1A17875T = KCTC 82198 T = NBRC 114670 T).


Subject(s)
Geologic Sediments/microbiology , Halomonas/isolation & purification , Base Composition , DNA, Bacterial/chemistry , Fatty Acids/analysis , Halomonas/chemistry , Halomonas/classification , Halomonas/genetics , Indian Ocean , Lipids/analysis , Phylogeny , Salt Tolerance
4.
Curr Microbiol ; 78(4): 1662-1669, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33651187

ABSTRACT

A Gram-staining-negative, aerobic, flagellated, motile, rod-shaped, halophilic bacterium QX-2T was isolated from the deep-sea sediment of the Southwest Indian Ocean at a depth of 2699 m. Growth of the QX-2T bacteria was observed at 4-50 °C (optimum 30 °C), pH 5.0-12.0 (optimum pH 6.0) and 0%-30% NaCl (w/v) [optimum 4% (w/v)]. 16S rRNA gene sequencing revealed that strain QX-2T has the closest relationship with Halomonas titanicae DSM 22872T (98.2%). Phylogeny analysis classified the strain QX-2T into the genus Halomonas. The average nucleotide identity and DNA-DNA hybridization values between strain QX-2T and related type strains were lower than the currently accepted new species definition standards. Principal fatty acids (> 10%) determined were C16:0 (12.41%), C12:0-3OH (25.15%), summed feature 3 (C16:1 ω7c and/or C16:1 ω6c, 11.55%) and summed feature 8 (C18:1 ω7c and/or C18:1 ω6c, 16.06%). Identified polar lipids in strain QX-2T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, unidentified phospholipid, unidentified aminophospholipid and five unidentified lipids (L1-L5). The main respiratory quinone was Q-9. The content of DNA G+C was determined to be 54.34 mol%. The results of phylogenetic analysis, phenotypic analysis and chemotaxonomic studies showed that strain QX-2T represents a novel species within the genus Halomonas, for which the name Halomonas sedimenti sp. nov. is proposed, with the type strain QX-2T (MCCC 1A17876T = KCTC 82199T).


Subject(s)
Halomonas , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/analysis , Halomonas/genetics , Indian Ocean , Phospholipids/analysis , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
5.
Front Plant Sci ; 6: 1267, 2015.
Article in English | MEDLINE | ID: mdl-26834769

ABSTRACT

Cereal aleurone layers undergo a gibberellin (GA)-regulated process of programmed cell death (PCD) following germination. Heme oxygenase-1 (HO-1) is known as a rate-liming enzyme in the degradation of heme to biliverdin IXα, carbon monoxide (CO), and free iron ions (Fe(2+)). It is a critical component in plant development and adaptation to environment stresses. Our previous studies confirmed that HO-1 inducer hematin (Ht) promotes the germination of rice seeds in drought (20% polyethylene glycol-6000, PEG) conditions, but the corresponding effects of HO-1 on the alleviation of germination-triggered PCD in GA-treated rice aleurone layers remain unknown. The present study has determined that GA co-treated with PEG results in lower HO-1 transcript levels and HO activity, which in turn results in the development of vacuoles in aleurone cells, followed by PCD. The pharmacology approach illustrated that up- or down-regulated HO-1 gene expression and HO activity delayed or accelerated GA-induced PCD. Furthermore, the application of the HO-1 inducer Ht and nitric oxide (NO) donor sodium nitroprusside (SNP) not only activated HO-1 gene expression, HO activity, and endogenous NO content, but also blocked GA-induced rapid vacuolation and accelerated aleurone layers PCD under drought stress. However, both HO-1 inhibitor zinc protoporphyrin IX (ZnPPIX) and NO scavenger 2-(4-carboxyphenyl0-4, 4,5,5-tetramethylimidazoline-l-oxyl-3-oxide potassium salt (cPTIO) reserved the effects of Ht and SNP on rice aleurone layer PCD under drought stress by down-regulating endogenous HO-1 and NO, respectively. The inducible effects of Ht and SNP on HO-1 gene expression, HO activity, and NO content were blocked by cPTIO. Together, these results clearly suggest that HO-1 is involved in the alleviation of GA-induced PCD of drought-triggered rice aleurone layers by associating with NO.

6.
Appl Opt ; 52(21): 5106-11, 2013 Jul 20.
Article in English | MEDLINE | ID: mdl-23872755

ABSTRACT

We have developed a general approach to perform direct measurements of the pretilt angles from 0° to 75° in hybrid-aligned nematic (HAN) liquid-crystal cells whose cell gaps can also be accurately determined with the help of known pretilt angles. In this paper, we have used a Zeeman laser system to measure the angular-dependence phase retardation of the HAN cells and MATLAB mathematical software to carry out theoretical calculations and fit the measured data to derive the pretilt angles. In general, pretilt angles adjacent to opposite substrates of a HAN cell are different. Our measured pretilt angles of the HAN cell were in good agreement with the measured pretilt angles of two accompanying homogenous cells whose alignment methods were the same as applied to opposite substrates of the HAN cell, respectively. The advantage of direct measurement is easily applicable to measure the pretilt angles of aged HAN cells.

7.
Opt Express ; 21(8): 10259-68, 2013 Apr 22.
Article in English | MEDLINE | ID: mdl-23609735

ABSTRACT

A metamaterial with brief and ultrathin structure performs high efficiency in light absorption. An upright aluminum nanorod array (Al NRA) is obliquely deposited, measured, and analyzed its optical property. The Al NRA performs high efficiency of light absorption and low reflectance simultaneously. Based on the measured refractive index and impedances, the wave propagation through the Al NRA is traced to demonstrate the destructive interference that leads to antireflection. According to the analysis of wave tracing, an Al semicontinuous film with thickness of 15nm is introduced under an Al NRA with thickness of only 245nm as a brief and thin two-layered structure. The broadband and polarization-independent light absorption is measured over the violet-to-infrared regime.


Subject(s)
Aluminum/chemistry , Interferometry/instrumentation , Nanotubes/chemistry , Absorption , Aluminum/radiation effects , Infrared Rays , Materials Testing , Nanotubes/radiation effects , Nanotubes/ultrastructure
8.
Sci Rep ; 3: 1672, 2013.
Article in English | MEDLINE | ID: mdl-23591704

ABSTRACT

A film comprising randomly distributed metal/dielectric/metal sandwich nanopillars with a distribution of cross-sectional diameters, displayed extremely low reflectance over the blue-to-red regime, when coated on glass and illuminated normally. When it is illuminated by normally incident light, this sandwich film (SWF) has a low extinction coefficient, its phase thickness is close to a negative wavelength in the blue-to-red spectral regime, and it provides weakly dispersive forward and backward impedances, so that reflected waves from the two faces of the SWF interfere destructively. Broadband reflection-reduction, over a wide range of incidence angles and regardless of the polarization state of the incident light, was observed when the SWF was deposited on polished silicon.


Subject(s)
Lenses , Membranes, Artificial , Metals/chemistry , Refractometry/instrumentation , Electric Impedance , Equipment Design , Equipment Failure Analysis , Light , Materials Testing , Scattering, Radiation
9.
Hippocampus ; 12(6): 787-802, 2002.
Article in English | MEDLINE | ID: mdl-12542230

ABSTRACT

Aging is associated with an impaired ability to maintain long-term potentiation (LTP), but the underlying cause of the impairment remains unclear. To gain a better understanding of the cellular and molecular mechanisms responsible for this impairment, the synaptic transmission and plasticity were studied in the CA1 region of hippocampal slices from adult (6-8 months) and poor-memory (PM)-aged (23-24 months) rats. The one-way inhibitory avoidance learning task was used as the behavioral paradigm to screen PM-aged rats. With intracellular recordings, CA1 neurons of PM-aged rats exhibited a more hyperpolarized resting membrane potential, reduced input resistance, and increased amplitude of afterhyperpolarization and spike threshold, compared with those in adult rats. Although a reduction in the size of excitatory synaptic response was observed in PM-aged rats, no obvious differences were found between adult and PM-aged rats in the pharmacological properties of excitatory synaptic response, paired-pulse facilitation, or frequency-dependent facilitation, which was tested with trains of 10 pulses at 1, 5, and 10 Hz. Slices from the PM-aged rats displayed significantly reduced early-phase long-term potentiation (E-LTP) and late-phase LTP (L-LTP), and the entire frequency-response curve of LTP and LTD is modified to favor LTD induction. The susceptibility of time-dependent reversal of LTP by low-frequency afferent stimulation was also facilitated in PM-aged rats. Bath application of the protein phosphatase inhibitor, calyculin A, enhanced synaptic response in slices from PM-aged, but not adult, rats. In contrast, application of the cAMP-dependent protein kinase inhibitors, Rp-8-CPT-cAMPS and KT5720, induced a decrease in synaptic transmission only in slices from the adult rats. Furthermore, the selective beta-adrenergic receptor agonist, isoproterenol, and pertussis toxin-sensitive G-protein inhibitor, N-ethylmaleimide, effectively restored the deficit in E-LTP and L-LTP of PM-aged rats. These results demonstrate that age-related impairments of synaptic transmission and LTP may result from alterations in the balance of protein kinase/phosphatase activities.


Subject(s)
Aging/metabolism , Hippocampus/enzymology , Long-Term Potentiation/physiology , Memory Disorders/enzymology , Phosphoprotein Phosphatases/metabolism , Protein Kinases/metabolism , Synaptic Transmission/physiology , Action Potentials/drug effects , Action Potentials/physiology , Afferent Pathways/drug effects , Afferent Pathways/enzymology , Afferent Pathways/physiopathology , Animals , Avoidance Learning/drug effects , Avoidance Learning/physiology , Electric Stimulation , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Hippocampus/pathology , Hippocampus/physiopathology , Long-Term Potentiation/drug effects , Male , Memory Disorders/physiopathology , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neurons/drug effects , Neurons/enzymology , Phosphoprotein Phosphatases/antagonists & inhibitors , Protein Kinase Inhibitors , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...