Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
aBIOTECH ; 5(1): 114, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576432

ABSTRACT

[This corrects the article DOI: 10.1007/s42994-023-00124-6.].

2.
aBIOTECH ; 5(1): 17-28, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38576436

ABSTRACT

Small RNA (sRNA)-mediated RNA silencing (also known as RNA interference, or RNAi) is a conserved mechanism in eukaryotes that includes RNA degradation, DNA methylation, heterochromatin formation and protein translation repression. In plants, sRNAs can move either cell-to-cell or systemically, thereby acting as mobile silencing signals to trigger noncell autonomous silencing. However, whether and what proteins are also involved in noncell autonomous silencing have not been elucidated. In this study, we utilized a previously reported inducible RNAi plant, PDSi, which can induce systemic silencing of the endogenous PDS gene, and we demonstrated that DCL3 is involved in systemic PDS silencing through its RNA binding activity. We confirmed that the C-terminus of DCL3, including the predicted RNA-binding domain, is capable of binding short RNAs. Mutations affecting RNA binding, but not processing activity, reduced systemic PDS silencing, indicating that DCL3 binding to RNAs is required for the induction of systemic silencing. Cucumber mosaic virus infection assays showed that the RNA-binding activity of DCL3 is required for antiviral RNAi in systemically noninoculated leaves. Our findings demonstrate that DCL3 acts as a signaling agent involved in noncell autonomous silencing and an antiviral effect in addition to its previously known function in the generation of 24-nucleotide sRNAs. Supplementary Information: The online version contains supplementary material available at 10.1007/s42994-023-00124-6.

3.
Int J Cardiol ; 396: 131432, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37827281

ABSTRACT

OBJECTIVES: Bleeding complications are one of the most serious postoperative complications after cardiac surgery and are associated with high mortality, especially in patients with infective endocarditis (IE). Our objectives were to identify the risk factors and develop a prediction model for postoperative bleeding complications in IE patients. METHODS: The clinical data of IE patients treated from October 2013 to January 2022 were reviewed. Multivariate logistic regression analysis was used to evaluate independent risk factors for postoperative bleeding complications and develop a prediction model accordingly. The prediction model was verified in a temporal validation cohort. The performance of the model was evaluated in terms of its discrimination power, calibration, precision, and clinical utility. RESULTS: A total of 423 consecutive patients with IE who underwent surgery were included in the final analysis, including 315 and 108 patients in the training cohort and validation cohort, respectively. Four variables were selected for developing a prediction model, including platelet counts, systolic blood pressure, heart failure and vegetations on the mitral and aortic valves. In the training cohort, the model exhibited excellent discrimination power (AUC = 0.883), calibration (Hosmer-Lemeshow test, P = 0.803), and precision (Brier score = 0.037). In addition, the model also demonstrated good discrimination power (AUC = 0.805), calibration (Hosmer-Lemeshow test, P = 0.413), and precision (Brier score = 0.067) in the validation cohort. CONCLUSIONS: We developed and validated a promising risk model with good discrimination power, calibration, and precision for predicting postoperative bleeding complications in IE patients.


Subject(s)
Endocarditis, Bacterial , Endocarditis , Humans , Risk Assessment , Endocarditis/complications , Endocarditis/diagnosis , Endocarditis/surgery , Risk Factors , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , Postoperative Hemorrhage/diagnosis , Postoperative Hemorrhage/epidemiology , Postoperative Hemorrhage/etiology , Retrospective Studies
4.
Clin Cardiol ; 47(1): e24171, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37814957

ABSTRACT

BACKGROUND: Heart failure (HF) and platelet count are often considered risk factors for mortality in patients with infective endocarditis (IE); however, their effects on various complications have not been elucidated. HYPOTHESIS: We speculated that HF and platelet count have significant impact on the short-term outcomes of IE. METHODS: This single-center retrospective study analyzed data from 320 IE patients who underwent surgery. A multivariate Cox proportional hazards model was used to identify the risk factors for adverse outcomes. The effect of the platelet count on the prognosis of patients with HF was determined by subgroup analysis and Kaplan-Meier analysis. RESULTS: The study population was divided into the HF group (n = 102) and the non-HF group (n = 218). The median age of the total population was 44.5 years (31-56 years), of which 227 (70.94%) patients were male. The incidence rates of 1-year all-cause mortality, cardiac outcomes, and composite outcomes were respectively almost sixfold, fourfold, and threefold higher in the HF group than in the non-HF group (all p < 0.001). In multivariate Cox regression analysis, HF was an independent risk factor for 1-year all-cause mortality, cardiac outcomes, cerebral outcomes, and composite outcomes. The Kaplan-Meier survival curves revealed that the patients with both HF and thrombocytopenia demonstrated the worst composite outcomes than the patients of the other groups (log-rank p < 0.001). In the HF group, the platelet count was significantly associated with mortality and composite outcomes. CONCLUSIONS: HF and preoperative platelet count are significantly associated with 1-year all-cause mortality and adverse outcomes postoperatively in IE patients. Patients with HF and thrombocytopenia have the worst short-term prognosis.


Subject(s)
Anemia , Endocarditis, Bacterial , Endocarditis , Heart Failure , Thrombocytopenia , Humans , Male , Adult , Female , Platelet Count , Retrospective Studies , Hospital Mortality , Heart Failure/diagnosis , Heart Failure/surgery , Heart Failure/complications , Endocarditis/diagnosis , Endocarditis/surgery , Prognosis , Risk Factors , Thrombocytopenia/complications , Thrombocytopenia/epidemiology
5.
World J Microbiol Biotechnol ; 40(1): 24, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38057640

ABSTRACT

α-Arbutin, a naturally occurring glycosylated derivative of hydroquinone (HQ), effectively inhibits melanin biosynthesis in epidermal cells. It is widely recognized as a fourth-generation whitening agent within the cosmetic industry. Currently, enzymatic catalysis is universally deemed the safest and most efficient method for α-arbutin synthesis. Sucrose phosphorylase (SPase), one of the most frequently employed glycosyltransferases, has been extensively reported for α-arbutin synthesis. In this study, a previously reported SPase known for its effectiveness in synthesizing α-arbutin, was used as a probe sequence to identify a novel SPase from Paenibacillus elgii (PeSP) in the protein database. The sequence similarity between PeSP and the probe was 39.71%, indicating a degree of novelty. Subsequently, the gene encoding PeSP was coexpressed with the molecular chaperone pG-Tf2 in Escherichia coli, significantly improving PeSP's solubility. Following this, PeSP was characterized and employed for α-arbutin biosynthesis. The specific activity of co-expressed PeSP reached 169.72 U/mg, exhibited optimal activity at 35℃ and pH 7.0, with a half-life of 3.6 h under the condition of 35℃. PeSP demonstrated excellent stability at pH 6.5-8.5 and sensitivity to high concentrations of metal ions. The kinetic parameters Km and kcat/Km were determined to be 14.50 mM and 9.79 min- 1·mM- 1, respectively.The reaction conditions for α-arbutin biosynthesis using recombinant PeSP were optimized, resulting in a maximum α-arbutin concentration of 52.60 g/L and a HQ conversion rate of 60.9%. The optimal conditions were achieved at 30℃ and pH 7.0 with 200 U/mL of PeSP, and by combining sucrose and hydroquinone at a molar ratio of 5:1 for a duration of 25 h.


Subject(s)
Arbutin , Hydroquinones , Hydroquinones/metabolism , Arbutin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism
6.
Food Sci Nutr ; 11(11): 6888-6898, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37970375

ABSTRACT

7,8-dihydroxyflavone (7,8-DHF) is a biologically active flavone with various physiological activities, including neuroprotection, anti-inflammation, and weight loss. Previous studies have found that the efflux protein P-glycoprotein (P-gp) significantly affects the transepithelial transport of 7,8-DHF in the intestine, resulting in its low oral bioavailability. Based on this, in this study, a Caco-2 monolayer cell model was used to investigate 14 dietary plant flavonoids as potential P-gp inhibitors, and their effects on the transepithelial transport and in vitro digestion of 7,8-DHF were explored. The results showed that among the 14 plant flavonoids, hesperetin, epigallocatechin gallate, fisetin, kaempferol, quercetin, and isoorientin increased and the apparent permeability coefficients (P app) of 7,8-DHF at AP → BL direction and lowered P app value at BL → AP direction to varying degrees, reducing the efflux ratio of 7,8-DHF less than 1.5. In particular, kaempferol and quercetin exhibited the best effect on promoting the transepithelial transport of 7,8-DHF, especially when used at molar concentration ratios of 1:1 and 1:2 with 7,8-DHF. This is beneficial for improving the oral bioavailability of 7,8-DHF. Meanwhile, 7,8-DHF was found to maintain structural stability in simulated saliva, gastric juice, and intestinal juice, and its stability was not affected by the coexistence of quercetin and kaempferol. Overall, this study provided a theoretical basis for seeking natural and safe P-gp inhibitors to improve the oral absorption of natural products.

7.
Ren Fail ; 45(2): 2282019, 2023.
Article in English | MEDLINE | ID: mdl-37982218

ABSTRACT

OBJECTIVE: In patients receiving extracorporeal membrane oxygenation (ECMO), continuous renal replacement therapy (CRRT) is increasingly being used for renal replacement and fluid management. However, critically ill surgical patients receiving combined ECMO and CRRT tend to have a high mortality rate, and there are limited studies on this population. Therefore, we aimed to investigate the risk factors for mortality in surgical patients receiving combined ECMO and CRRT. METHODS: Data of surgical patients who underwent ECMO between December 2013 and April 2023 were retrospectively reviewed. Univariate and multivariate logistic regression analysis were used to identify the risk variables. Receiver operating characteristic (ROC) curve analysis was used to determine the cutoff value of albumin and age to predict death. RESULTS: A total of 199 patients on ECMO support were screened, of which 105 patients were included in the final analysis. Of 105 patients, 77 (73.33%) were treated with CRRT. Veno-arterial ECMO was performed in 97 cases (92.38%), and the rest were veno-venous ECMO (n = 8, 7.62%). Cardiovascular-related surgery was performed in the main patients (n = 86, 81.90%) and other types of surgery in 19 patients. In surgical patients on ECMO support, the logistic regression analysis showed that CRRT implantation, male sex, and age were the independent risks factors for mortality. Furthermore, the ROC curve analysis showed that age 48.5 years had the highest Youden index. In surgical patients on combined CRRT and ECMO, age, valvular heart disease, and albumin were the independent risk factors for prognosis. Albumin had the highest Youden index at a cutoff value of 39.95 g/L for predicting mortality, though the overall predictive value was modest (area under ROC 0.704). Age had the highest Youden index at a cutoff value of 48.5 years for predicting mortality. CONCLUSIONS: In our cohort of surgical patients requiring ECMO, which consisted mostly of patients undergoing cardiovascular surgery requiring VA-ECMO, the need for CRRT was an independent risk factor for mortality. In the subset of patients on combined CRRT and ECMO, independent risk factors for mortality included higher age, lack of valvular heart disease, and lower serum albumin.


Subject(s)
Continuous Renal Replacement Therapy , Extracorporeal Membrane Oxygenation , Heart Valve Diseases , Humans , Male , Middle Aged , Retrospective Studies , Risk Factors , Serum Albumin
8.
Sci Rep ; 13(1): 15589, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730957

ABSTRACT

In recent years, heat transfer enhancement of heat exchange equipment has attracted more and more attention. In this paper, the heat transfer and pressure drop characteristics of sine wavy flying-wing fins are studied by numerical method. The objective is to improve the integrated heat transfer and pressure drop performance of sine wavy flying-wing fins. The degrees of freedom of fin sizes include fin pitch to fin height ratio fp/fh, fin height to fin wavelength ratio fh/W, fin amplitude to fin pitch ratio 2A/fp and fin inclined angle α. The results show that among the calculated 17 flying-wing fins, the optimal values of fp/fh, fh/W, 2A/fp, and α are 0.5, 0.4, 1.9 and 70° respectively. The optimized SWFWF simulation model is established, and the average JF factor is 1.307, which is about 10.9% higher than that of Fin 05 (JF = 1.18). Multiple linear regression is used to obtain the correlations of flow and heat transfer characteristics of flying-wing fins. The average deviation of the correlations for j and f are 0.85% and 4.9% respectively. The correlations can be used for the design and optimization of sine wavy flying-wing fins.

9.
Nat Commun ; 14(1): 4844, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37563142

ABSTRACT

The soil-borne fungus Verticillium dahliae, the most notorious plant pathogen of the Verticillium genus, causes vascular wilts in a wide variety of economically important crops. The molecular mechanism of V. dahliae pathogenesis remains largely elusive. Here, we identify a small ubiquitin-like modifier (SUMO)-specific protease (VdUlpB) from V. dahliae, and find that VdUlpB facilitates V. dahliae virulence by deconjugating SUMO from V. dahliae enolase (VdEno). We identify five lysine residues (K96, K254, K259, K313 and K434) that mediate VdEno SUMOylation, and SUMOylated VdEno preferentially localized in nucleus where it functions as a transcription repressor to inhibit the expression of an effector VdSCP8. Importantly, VdUlpB mediates deSUMOylation of VdEno facilitates its cytoplasmic distribution, which allows it to function as a glycolytic enzyme. Our study reveals a sophisticated pathogenic mechanism of VdUlpB-mediated enolase deSUMOylation, which fortifies glycolytic pathway for growth and contributes to V. dahliae virulence through derepressing the expression of an effector.


Subject(s)
Ascomycota , Verticillium , Virulence , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Plant Diseases/microbiology
10.
Front Nutr ; 10: 1197382, 2023.
Article in English | MEDLINE | ID: mdl-37502715

ABSTRACT

Background: Exceeding 50% tuna catches are regarded as byproducts in the production of cans. Given the high amount of tuna byproducts and their environmental effects induced by disposal and elimination, the valorization of nutritional ingredients from these by-products receives increasing attention. Objective: This study was to identify the angiotensin-I-converting enzyme (ACE) inhibitory (ACEi) peptides from roe hydrolysate of Skipjack tuna (Katsuwonus pelamis) and evaluate their protection functions on H2O2-induced human umbilical vein endothelial cells (HUVECs). Methods: Protein hydrolysate of tuna roes with high ACEi activity was prepared using flavourzyme, and ACEi peptides were isolated from the roe hydrolysate using ultrafiltration and chromatography methods and identified by ESI/MS and Procise Protein/Peptide Sequencer for the N-terminal amino acid sequence. The activity and mechanism of action of isolated ACEi peptides were investigated through molecular docking and cellular experiments. Results: Four ACEi peptides were identified as WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12), respectively. The affinity of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) with ACE was -8.590, -9.703, -9.325, and -8.036 kcal/mol, respectively. The molecular docking experiment elucidated that the significant ACEi ability of WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) was mostly owed to their tight bond with ACE's active sites/pockets via hydrophobic interaction, electrostatic force and hydrogen bonding. Additionally, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could dramatically elevate the Nitric Oxide (NO) production and bring down endothelin-1 (ET-1) secretion in HUVECs, but also abolish the opposite impact of norepinephrine (0.5 µM) on the production of NO and ET-1. Moreover, WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) could lower the oxidative damage and apoptosis rate of H2O2-induced HUVECs, and the mechanism indicated that they could increase the content of NO and activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) to decrease the generation of reactive oxygen species (ROS) and malondialdehyde (MDA). Conclusion: WGESF (TRP3), IKSW (TRP6), YSHM (TRP9), and WSPGF (TRP12) are beneficial ingredients for healthy products ameliorating hypertension and cardiovascular diseases.

11.
Aging (Albany NY) ; 15(9): 3771-3790, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37166424

ABSTRACT

PURPOSE: Despite the fact that genetic risk factors contribute to low-grade gliomas (LGGs), the role of critical genes as prognostic and theraputic biomarkers is quite limited. This study is designed to comprehensively investigate the prognostic role and predictive ability of solute carrier family 10 member 3 (SLC10A3) for immunotherapy in LGGs. METHODS: We analyzed the prognostic value of SLC10A3 from multiple datasets of LGG patients, and explored its immune correlation via multiple algorithms. Finally, we independently confirmed the clinical significance and its immune correlation using the multiplex staining assay of LGG samples on the tissue microarray. RESULTS: SLC10A3 mRNA was up-regulated in LGGs compared with normal brain tissues, and correlated with tumor grade, histological type, IDH wide type and non-codel 1p19q. Up-regulation of SLC10A3 transcription was remarkably associated with shortened overall survival time compared with down-regulation in TCGA, CGGA and Rembrandt datasets, and SLC10A3 exhibited good predictive ability for survival outcomes among LGGs. Correlation analyses showed that SLC10A3 mRNA expression correlates well with the six immune check points and immune cells. When the expression and immune correlation of SLC10A3 at the translational level were verified via multiplex immunohistochemistry, expression of SLC10A3 protein was higher in LGG compared with normal tissues, and expression of SLC10A3 protein was correlated well with macrophage, CD4 + T cell and B cell. CONCLUSIONS: Up-regulation of SLC10A3 mRNA is statistically associated with adverse survival outcomes and immune infiltration among LGGs. SLC10A3 might be a reliable survival predictor and a promising immunotherapy target for LGG patients.


Subject(s)
Brain Neoplasms , Glioma , Humans , Prognosis , Brain Neoplasms/pathology , Immunohistochemistry , Glioma/pathology , RNA, Messenger/genetics
12.
J Fungi (Basel) ; 9(4)2023 Apr 18.
Article in English | MEDLINE | ID: mdl-37108938

ABSTRACT

For successful colonization, fungal pathogens have evolved specialized infection structures to overcome the barriers present in host plants. The morphology of infection structures and pathogenic mechanisms are diverse according to host specificity. Verticillium dahliae, a soil-borne phytopathogenic fungus, generates hyphopodium with a penetration peg on cotton roots while developing appressoria, that are typically associated with leaf infection on lettuce and fiber flax roots. In this study, we isolated the pathogenic fungus, V. dahliae (VdaSm), from Verticillium wilt eggplants and generated a GFP-labeled isolate to explore the colonization process of VdaSm on eggplants. We found that the formation of hyphopodium with penetration peg is crucial for the initial colonization of VdaSm on eggplant roots, indicating that the colonization processes on eggplant and cotton share a similar feature. Furthermore, we demonstrated that the VdNoxB/VdPls1-dependent Ca2+ elevation activating VdCrz1 signaling is a common genetic pathway to regulate infection-related development in V. dahliae. Our results indicated that VdNoxB/VdPls1-dependent pathway may be a desirable target to develop effective fungicides, to protect crops from V. dahliae infection by interrupting the formation of specialized infection structures.

13.
Rev. bras. cir. cardiovasc ; 38(1): 104-109, Jan.-Feb. 2023. tab
Article in English | LILACS-Express | LILACS | ID: biblio-1423098

ABSTRACT

ABSTRACT Introduction: There are few circulating biomarkers for valvular heart disease. Angiopoietin (Ang) 1, Ang2, and vascular endothelial growth factor are important inflammation-associated cytokines. The aim of this study was to investigate the clinical significance and association of Ang1, Ang2, and vascular endothelial growth factor in valvular heart disease. Methods: This is a retrospective study; a total of 62 individuals (valvular heart disease patients [n=42] and healthy controls [n=20]) were included. Plasma levels of Ang1, Ang2, and vascular endothelial growth factor were detected by enzyme-linked immunosorbent assays. We retrospectively collected the baseline characteristics and short-term outcomes; logistic regression was performed to identify predictor for short-term mortality. Results: Ang2 was significantly decreased in the valvular heart disease group compared with the healthy control group (P=0.023), while no significant difference was observed in the Ang1 and vascular endothelial growth factor levels. The Ang2 level of New York Heart Association (NYHA) I/II patients — but not NYHA III/IV patients — was significantly decreased compared with that of healthy control individuals (NYHA I/II: P=0.017; NYHA III/IV: P=0.485). Univariable logistic regression analysis indicated that Ang2 was a significant independent predictor for short-term mortality (odds ratio 18.75, P=0.033, 95% confidence interval 8.08-102.33). Ang1 was negatively correlated with Ang2 (P=0.032, Pearson's correlation coefficient =-0.317) and was positively correlated with vascular endothelial growth factor (P=0.019, Pearson's correlation coefficient = 0.359). Conclusion: Ang2 might serve as a therapeutic and prognostic target for valvular heart disease.

14.
Braz J Cardiovasc Surg ; 38(1): 104-109, 2023 02 10.
Article in English | MEDLINE | ID: mdl-35657310

ABSTRACT

INTRODUCTION: There are few circulating biomarkers for valvular heart disease. Angiopoietin (Ang) 1, Ang2, and vascular endothelial growth factor are important inflammation-associated cytokines. The aim of this study was to investigate the clinical significance and association of Ang1, Ang2, and vascular endothelial growth factor in valvular heart disease. METHODS: This is a retrospective study; a total of 62 individuals (valvular heart disease patients [n=42] and healthy controls [n=20]) were included. Plasma levels of Ang1, Ang2, and vascular endothelial growth factor were detected by enzyme-linked immunosorbent assays. We retrospectively collected the baseline characteristics and short-term outcomes; logistic regression was performed to identify predictor for short-term mortality. RESULTS: Ang2 was significantly decreased in the valvular heart disease group compared with the healthy control group (P=0.023), while no significant difference was observed in the Ang1 and vascular endothelial growth factor levels. The Ang2 level of New York Heart Association (NYHA) I/II patients - but not NYHA III/IV patients - was significantly decreased compared with that of healthy control individuals (NYHA I/II: P=0.017; NYHA III/IV: P=0.485). Univariable logistic regression analysis indicated that Ang2 was a significant independent predictor for short-term mortality (odds ratio 18.75, P=0.033, 95% confidence interval 8.08-102.33). Ang1 was negatively correlated with Ang2 (P=0.032, Pearson's correlation coefficient =-0.317) and was positively correlated with vascular endothelial growth factor (P=0.019, Pearson's correlation coefficient = 0.359). CONCLUSION: Ang2 might serve as a therapeutic and prognostic target for valvular heart disease.


Subject(s)
Heart Valve Diseases , Vascular Endothelial Growth Factor A , Humans , Angiopoietins , Prognosis , Retrospective Studies , Vascular Endothelial Growth Factors
15.
Polymers (Basel) ; 14(21)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36365467

ABSTRACT

This study aimed to develop a safe and advanced antibacterial material of electrospun microfiber membranes (MFMs) for wound dressings. Combinations of several materials were investigated; thermal treatment and electrospinning techniques were used to form the best quality of MFMs to suit its end applications. By comparing the fiber morphology, diameter changes, and fracture strength, the suitable ratio of raw materials and thermal treatment were obtained before and after adding Trition X-100 as a surfactant for MFMs of sodium alginate/polyvinyl alcohol/polyethylene oxide (SA/PVA/PEO). The electrospinning solution was mixed with berberine as an antibacterial substance; meanwhile, calcium chloride (CaCl2) was used as the crosslinking agent. The antibacterial properties, water dissolution resistance, water content, and fracture strength were thoroughly investigated. The results showed that the antibacterial rates of MFMs with different mass fractions of berberine (0, 3, and 5 wt.%) to Escherichia coli (E. coli) were 14.7, 92.9, and 97.2%, respectively. The moisture content and fracture strength of MFMs containing 5 wt.% berberine were 72.0% and 7.8 MPa, respectively. In addition, the produced MFMs embodied great water dissolution resistance. Berberine-loaded SA/PVA/PEO MFMs could potentially serve as an antibacterial wound dressing substrate with low cost and small side effects.

16.
Foods ; 11(21)2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36359990

ABSTRACT

Ultra-high performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UHPLC-Q-TOF-MS/MS) was used to study the diversity of tea polysaccharides and the dynamic changes in the physicochemical indexes of tea samples. FT-IR spectra and the free radical scavenging ability of tea polysaccharides, during pile-fermentation of post-fermented tea, were analyzed. The results showed that 23 saccharide co mponents in tea polysaccharides were identified: these belonged to 11 monosaccharides, 5 oligosaccharides, and 6 derivatives of monosaccharides and oligosaccharides. The abundance of oligosaccharides decreased gradually, while monosaccharides, and derivatives of monosaccharides and oligosaccharides increased gradually with the development of pile-fermentation. According to the differences in polysaccharide composition and their abundance, the tea polysaccharide samples extracted from different pile-fermentation stages could be clearly classed into three groups, W-0, W-1~W-4 and W-5~C-1. The pile-fermentation process affected the yield, the content of each component, FT-IR spectra, and the DPPH free radical scavenging ability of tea polysaccharides. Correlation analysis showed that microorganisms were directly related to the changes in composition and the abundance of polysaccharides extracted from different pile-fermentation stages. The study will further help to reveal the function of tea polysaccharides and promote their practical application as a functional food.

17.
Crit Rev Food Sci Nutr ; : 1-24, 2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36062818

ABSTRACT

Fish oil, rich in a variety of long-chain ω-3 PUFAs, is widely used in fortified foods due to its broad-spectrum health benefits. However, its undesired characteristics include oxidation sensitivity, poor water solubility, and fishy off-flavor greatly hinder its exploitation in food field. Over the past two decades, constructing fish oil emulsions to encapsulate ω-3 PUFAs for improving their physicochemical and functional properties has undergone great progress. This review mainly focuses on understanding the fabrication strategies, stabilization mechanism, and potential applications of fish oil emulsions, including fish oil microemulsions, nanoemulsions, double emulsions, Pickering emulsions and emulsion gels. Furthermore, the role of oil-water interfacial stabilizers in the fish oil emulsions stability will be discussed with a highlight on food-grade single emulsifiers and natural complex systems for achieving this purpose. Additionally, its roles and applications in food industry and nutrition field are delineated. Finally, possible innovative food trends and applications are highlighted, such as novel fish oil-based delivery systems construction (e.g., Janus emulsions and nutraceutical co-delivery systems), exploring digestion and absorption mechanisms and enhancing functional evaluation (e.g., nutritional supplement enhancer, and novel fortified/functional foods). This review provides a reference for the application of fish oil-based emulsion systems in future precision diet intervention implementations.

18.
Sensors (Basel) ; 22(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36146110

ABSTRACT

Aiming at the problem of class imbalance in the wind turbine blade bolts operation-monitoring dataset, a fault detection method for wind turbine blade bolts based on Gaussian Mixture Model-Synthetic Minority Oversampling Technique-Gaussian Mixture Model (GSG) combined with Cost-Sensitive LightGBM (CS-LightGBM) was proposed. Since it is difficult to obtain the fault samples of blade bolts, the GSG oversampling method was constructed to increase the fault samples in the blade bolt dataset. The method obtains the optimal number of clusters through the BIC criterion, and uses the GMM based on the optimal number of clusters to optimally cluster the fault samples in the blade bolt dataset. According to the density distribution of fault samples in inter-clusters, we synthesized new fault samples using SMOTE in an intra-cluster. This retains the distribution characteristics of the original fault class samples. Then, we used the GMM with the same initial cluster center to cluster the fault class samples that were added to new samples, and removed the synthetic fault class samples that were not clustered into the corresponding clusters. Finally, the synthetic data training set was used to train the CS-LightGBM fault detection model. Additionally, the hyperparameters of CS-LightGBM were optimized by the Bayesian optimization algorithm to obtain the optimal CS-LightGBM fault detection model. The experimental results show that compared with six models including SMOTE-LightGBM, CS-LightGBM, K-means-SMOTE-LightGBM, etc., the proposed fault detection model is superior to the other comparison methods in the false alarm rate, missing alarm rate and F1-score index. The method can well realize the fault detection of large wind turbine blade bolts.

19.
Sensors (Basel) ; 22(18)2022 Sep 09.
Article in English | MEDLINE | ID: mdl-36146174

ABSTRACT

As one of the key components of wind turbines, gearboxes are under complex alternating loads for a long time, and the safety and reliability of the whole machine are often affected by the failure of internal gears and bearings. Aiming at the difficulty of optimizing the parameters of wind turbine gearbox fault detection models based on extreme random forest, a fault detection model with extreme random forest optimized by the improved butterfly optimization algorithm (IBOA-ERF) is proposed. The algebraic sum of the false alarm rate and the missing alarm rate of the fault detection model is constructed as the fitness function, and the initial position and position update strategy of the individual are improved. A chaotic mapping strategy is introduced to replace the original population initialization method to enhance the randomness of the initial population distribution. An adaptive inertia weight factor is proposed, combined with the landmark operator of the pigeon swarm optimization algorithm to update the population position iteration equation to speed up the convergence speed and improve the diversity and robustness of the butterfly optimization algorithm. The dynamic switching method of local and global search stages is adopted to achieve dynamic balance between global exploration and local search, and to avoid falling into local optima. The ERF fault detection model is trained, and the improved butterfly optimization algorithm is used to obtain optimal parameters to achieve fast response of the proposed model with good robustness and generalization under high-dimensional data. The experimental results show that, compared with other optimization algorithms, the proposed fault detection method of wind turbine gearboxes has a lower false alarm rate and missing alarm rate.

20.
Vet Microbiol ; 273: 109541, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36027683

ABSTRACT

Classical swine fever (CSF) is a highly contagious and important swine disease in China. Sporadic outbreaks with mild clinical signs are still being reported despite massive vaccination with the CSF C-strain vaccine. One possible reason for vaccine failure could be interference from maternally derived antibodies (MDAs) during vaccination in the field. The aim of this study was to evaluate the efficacy of different CSF vaccines in the presence of MDAs and to assess the different vaccination schemes in the field. The results demonstrated that vaccination with a single dose of C-strain-PK vaccine protected pigs against severe clinical signs and significantly reduced viremia. The impact of MDAs was negligible. The interference was also mild during a prime and boost vaccination scheme using the C-strain-ST vaccine. In contrast, a significant influence of MDAs on the efficacy of the subunit E2 vaccine in a one-dose vaccination scheme was observed, with pigs showing severe clinical signs, CSF-associated death, typical pathological lesions and a high level of viremia after challenge, despite robust E2 antibody induction. A field vaccination and challenge study further confirmed the superior effectiveness of a single dose of C-strain-PK vaccine in the presence of MDAs in comparison to a routine prime and boost vaccination scheme applied in the field, with pigs having fever, chronic signs, significant viremia and shedding after challenge. Delaying the vaccination time from the age of 28 days to 45 days, when MDA was low, was beneficial for improving the clinical protection and immunity induced by vaccines. Altogether, the results presented here emphasize that a high-quality vaccine and a scientific design of the vaccination scheme based on serological surveillance are essential pillars to control and eliminate CSF in China.


Subject(s)
Classical Swine Fever Virus , Classical Swine Fever , Viral Vaccines , Animals , Antibodies, Viral , Swine , Vaccination/veterinary , Vaccines, Subunit , Viremia/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...