Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4344, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773145

ABSTRACT

Charge loss at grain boundaries of kesterite Cu2ZnSn(S, Se)4 polycrystalline absorbers is an important cause limiting the performance of this emerging thin-film solar cell. Herein, we report a Pd element assisted reaction strategy to suppress atomic vacancy defects in GB regions. The Pd, on one hand in the form of PdSex compounds, can heterogeneously cover the GBs of the absorber film, suppressing Sn and Se volatilization loss and the formation of their vacancy defects (i.e. VSn and VSe), and on the other hand, in the form of Pd(II)/Pd(IV) redox shuttle, can assist the capture and exchange of Se atoms, thus contributing to eliminating the already-existing VSe defects within GBs. These collective effects have effectively reduced charge recombination loss and enhanced p-type characteristics of the kesterite absorber. As a result, high-performance kesterite solar cells with a total-area efficiency of 14.5% (certified at 14.3%) have been achieved.

2.
Nat Commun ; 14(1): 6650, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37863920

ABSTRACT

Kesterite Cu2ZnSn(S, Se)4 is considered one of the most competitive photovoltaic materials due to its earth-abundant and nontoxic constituent elements, environmental friendliness, and high stability. However, the preparation of high-quality Kesterite absorbers for photovoltaics is still challenging for the uncontrollability and complexity of selenization reactions between metal element precursors and selenium. In this study, we propose a solid-liquid/solid-gas (solid precursor and liquid/vapor Se) synergistic reaction strategy to precisely control the selenization process. By pre-depositing excess liquid selenium, we provide the high chemical potential of selenium to facilitate the direct and rapid formation of the Kesterite phase. The further optimization of selenium condensation and subsequent volatilization enables the efficient removal of organic compounds and thus improves charge transport in the absorber film. As a result, we achieve high-performance Kesterite solar cells with total-area efficiency of 13.6% (certified at 13.44%) and 1.09 cm2-area efficiency of 12.0% (certified at 12.1%).

3.
Adv Mater ; 35(28): e2301879, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37022759

ABSTRACT

Severe nonradiative recombination originating from interfacial defects together with the pervasive energy level mismatch at the interface remarkably limits the performance of CsPbI3 perovskite solar cells (PSCs). These issues need to be addressed urgently for high-performance cells and their applications. Herein, an interfacial gradient heterostructure based on low-temperature post-treatment of quaternary bromide salts for efficient CsPbI3 PSCs with an impressive efficiency of 21.31% and an extraordinary fill factor of 0.854 is demonstrated. Further investigation reveals that Br- ions diffuse into the perovskite films to heal undercoordinated Pb2+ and inhibit Pb cluster formation, thus suppressing nonradiative recombination in CsPbI3 . Meanwhile, a more compatible interfacial energy level alignment resulting from Br- gradient distribution and organic cations surface termination is also achieved, hence promoting charge separation and collection. Consequently, the printed small-size cell with an efficiency of 20.28% and 12 cm2 printed CsPbI3 minimodules with a record efficiency of 16.60% are also demonstrated. Moreover, the unencapsulated CsPbI3 films and devices exhibit superior stability.


Subject(s)
Calcium Compounds , Lead , Cold Temperature , Oxides
4.
Adv Mater ; 34(45): e2205028, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36096152

ABSTRACT

All-inorganic CsPbI3 perovskite has emerged as an important photovoltaic material due to its high thermal stability and suitable bandgap for tandem devices. Currently, the cell performance of CsPbI3 solar cells is mainly subject to a large open-circuit voltage (VOC ) deficit. Herein, a multifunctional room-temperature molten salt, dimethylamine acetate (DMAAc) is demonstrated, which not only directly acts as a solvent for precursor solutions, but also regulates the phase conversion process of the CsPbI3 film for high-efficiency photovoltaics. DMAAc can stabilize the DMAPbI3 structure and eliminate the Cs4 PbI6 intermediate phase, which is easily spatially segregated. Meanwhile, a new homogeneous intermediate phase DMAPb(I,Ac)3 is formed, which finally affords high-quality CsPbI3 films. With this approach, the charge capture activity of defects in the CsPbI3 film is significantly suppressed. Consequently, a VOC of 1.25 V and >21% power conversion efficiency are achieved, which is the record highest reported thus far. This intermediate phase-regulation strategy is believed to be applicable to other perovskite material systems.

5.
Adv Mater ; 34(27): e2202858, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35523720

ABSTRACT

Aiming at a large open-circuit voltage (VOC ) deficit in Cu2 ZnSn(S,Se)4 (CZTSSe) solar cells, a new and effective strategy to simultaneously regulate the back interface and restrain bulk defects of CZTSSe absorbers is developed by directly introducing a thin GeO2 layer on Mo substrates. Power conversion efficiency (power-to-efficiency) as high as 13.14% with a VOC of 547 mV is achieved for the champion device, which presents a certified efficiency of 12.8% (aperture area: 0.25667 cm2 ). Further investigation reveals that Ge bidirectional diffusion simultaneously occurs toward the CZTSSe absorber and MoSe2 layer at the back interface while being selenized. That is, some Ge element from the GeO2 diffuses into the CZTSSe absorber layer to afford Ge-doped absorbers, which can significantly reduce the defect density and band tailing, and facilitate quasi-Fermi level split by relatively higher hole concentration. Meanwhile, a small amount of Ge element also participates in the formation of MoSe2 at the back interface, thus enhancing the work function of MoSe2 and effectively separating photoinduced carriers. This work highlights the synergistic effect of Ge element toward the bulk absorber and the back interface and also provides an easy-handling way to achieve high-performance CZTSSe solar cells.

6.
Angew Chem Int Ed Engl ; 61(23): e202201300, 2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35243747

ABSTRACT

Low-dimensional (LD) perovskites can effectively passivate and stabilize 3D perovskites for high-performance perovskite solar cells (PSCs). Regards CsPbI3 -based PSCs, the influence of high-temperature annealing on the LD perovskite passivation effect has to be taken into account due to fact the black-phase CsPbI3 crystallization requires high-temperature treatment, however, which has been rarely concerned so far. Here, the thermal stability of LD perovskites based on three hydrophobic organic ammonium salts and their passivation effect toward CsPbI3 and the whole device performance, have been investigated. It is found that, phenyltrimethylammonium iodide (PTAI) and its corresponding LD perovskites exhibit excellent thermal stability. Further investigation reveals that PTAI-based LD perovskites are mainly distributed at grain boundaries, which not only enhances the phase stability of CsPbI3 but also effectively suppresses non-radiative recombination. As a consequence, the champion PSC device based on CsPbI3 exhibits a record efficiency of 21.0 % with high stability.

7.
ACS Appl Mater Interfaces ; 13(46): 55243-55253, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34751555

ABSTRACT

The post-heating treatment of the CZTSSe/CdS heterojunction can enhance the interfacial properties of kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells. In this regard, a two-step annealing method was developed to enhance the heterojunction quality for the first time. That is, a low-temperature (90 °C) process was introduced before the high-temperature treatment, and 12.3% efficiency of CZTSSe solar cells was achieved. Further investigation revealed that the CZTSSe/CdS heterojunction band alignment with a smaller spike barrier can be realized by the two-step annealing treatment, which assisted in carrier transportation and reduced the charge recombination loss, thus enhancing the open-circuit voltage (VOC) and fill factor (FF) of the devices. In addition, the two-step annealing could effectively avoid the disadvantages of direct high-temperature treatment (such as more pinholes on CdS films and excess element diffusion), improve the CdS crystallization, and decrease the defect densities within the device, especially interfacial defects. This work provides an effective method to improve the CZTSSe/CdS heterojunction properties for efficient kesterite solar cells.

8.
Angew Chem Int Ed Engl ; 60(24): 13436-13443, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33792125

ABSTRACT

Besides widely used surface passivation, engineering the film crystallization is an important and more fundamental route to improve the performance of all-inorganic perovskite solar cells. Herein, we have developed a urea-ammonium thiocyanate (UAT) molten salt modification strategy to fully release and exploit coordination activities of SCN- to deposit high-quality CsPbI3 film for efficient and stable all-inorganic solar cells. The UAT is derived by the hydrogen bond interactions between urea and NH4 + from NH4 SCN. With the UAT, the crystal quality of the CsPbI3 film has been significantly improved and a long single-exponential charge recombination lifetime of over 30 ns has been achieved. With these benefits, the cell efficiency has been promoted to over 20 % (steady-state efficiency of 19.2 %) with excellent operational stability over 1000 h. These results demonstrate a promising development route of the CsPbI3 related photoelectric devices.

9.
ACS Appl Mater Interfaces ; 13(8): 9771-9780, 2021 Mar 03.
Article in English | MEDLINE | ID: mdl-33615775

ABSTRACT

In perovskite solar cells, the halide vacancy defects on the perovskite film surface/interface will instigate charge recombination, leading to a decrease in cell performance. In this study, cadmium sulfide (CdS) has been introduced into the precursor solution to reduce the halide vacancy defects and improve the cell performance. The highest efficiency of the device reaches 21.62%. Density functional theory calculation reveals that the incorporated Cd2+ ions can partially replace Pb2+ ions, thus forming a strong Cd-I bond and effectively reducing iodide vacancy defects (VI); at the same time, the loss of the charge recombination is significantly reduced because VI is filled by S2- ions. Besides, the substitution of Cd2+ for Pb2+ could increase the generation of PbI2, which can further passivate the grain boundary. Therefore, the stability of the cells, together with the efficiency of the power conversion efficiencies (PCEs), is also improved, maintaining 87.5% of its initial PCEs after being irradiated over 410 h. This work provides a very effective strategy to passivate the surface/interface defects of perovskite films for more efficient and stable optoelectronic devices.

10.
Sci Bull (Beijing) ; 66(6): 536-544, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-36654423

ABSTRACT

Intrinsic and extrinsic ion migration is a very large threat to the operational stability of perovskite solar cells and is difficult to completely eliminate due to the low activation energy of ion migration and the existence of internal electric field. We propose a heterojunction route to help suppress ion migration, thus improving the operational stability of the cell from the perspective of eliminating the electric field response in the perovskite absorber. A heavily doped p-type (p+) thin layer semiconductor is introduced between the electron transporting layer (ETL) and perovskite absorber. The heterojunction charge depletion and electric field are limited to the ETL and p+ layers, while the perovskite absorber and hole transporting layer remain neutral. The p+ layer has a variety of candidate materials and is tolerant of defect density and carrier mobility, which makes this heterojunction route highly feasible and promising for use in practical applications.

11.
Adv Mater ; 32(23): e1907396, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32350937

ABSTRACT

Surface passivation is an effective approach to eliminate defects and thus to achieve efficient perovskite solar cells, while the stability of the passivation effect is a new concern for device stability engineering. Herein, tribenzylphosphine oxide (TBPO) is introduced to stably passivate the perovskite surface. A high efficiency exceeding 22%, with steady-state efficiency of 21.6%, is achieved, which is among the highest performances for TiO2 planar cells, and the hysteresis is significantly suppressed. Further density functional theory (DFT) calculation reveals that the surface molecule superstructure induced by TBPO intermolecular π-π conjugation, such as the periodic interconnected structure, results in a high stability of TBPO-perovskite coordination and passivation. The passivated cell exhibits significantly improved stability, with sustaining 92% of initial efficiency after 250 h maximum-power-point tracking. Therefore, the construction of a stabilized surface passivation in this work represents great progress in the stability engineering of perovskite solar cells.

12.
ACS Appl Mater Interfaces ; 12(24): 27258-27267, 2020 Jun 17.
Article in English | MEDLINE | ID: mdl-32441500

ABSTRACT

The stability issue hinders the commercialization of the perovskite solar cells (PSCs), which is widely recognized. The efficiency generally decreases over time during the working condition. Here, we report an efficiency enhancement phenomenon of PSCs in the stability test at the maximum power point, which is speculated to be related to the electric-field-induced ion migration. The defect density and efficiency-related parameters were traced in situ by admittance spectroscopy and transient photovoltage when the cell works under bias voltage. The performance enhancement was revealed to be attributed to the reduction of the cell defects owing to ion migration. An efficiency of 22.3% can be achieved after the bias voltage was kept for 8 h. These findings suggest that ion migration is a double-edged sword that affects the electrical stability of PSCs, which presents a potential approach to improve the device's stability by appropriately controlling the defect states.

13.
Sci Bull (Beijing) ; 65(9): 738-746, 2020 May 15.
Article in English | MEDLINE | ID: mdl-36659107

ABSTRACT

Aqueous precursors provide an alluring approach for low-cost and environmentally friendly production of earth-abundant Cu2ZnSn(S, Se)4 (CZTSSe) solar cells. The key is to find an appropriate molecular agent to prepare a stable solution and optimize the coordination structure to facilitate the subsequent crystallization process. Herein, we introduce thioglycolic acid (TGA), which possesses strong coordination (SH) and hydrophilic (COOH) groups, as the agent and use deprotonation to regulate the coordination competition within the aqueous solution. Ultimately, metal cations are adequately coordinated with thiolate anions, and carboxylate anions are released to become hydrated to form an ultrastable aqueous solution. These factors have contributed to achieving CZTSSe solar cells with an efficiency as high as 12.3% (a certified efficiency of 12.0%) and providing an extremely wide time window for precursor storage and usage. This work represents significant progress in the non-toxic solution fabrication of CZTSSe solar cells and holds great potential for the development of CZTSSe and other metal sulfide solar cells.

14.
ACS Appl Mater Interfaces ; 10(11): 9503-9513, 2018 Mar 21.
Article in English | MEDLINE | ID: mdl-29473419

ABSTRACT

In this study, we systematically explored the mixed-cation perovskite Cs x(MA0.4FA0.6)1- xPbI3 fabricated via sequential introduction of cations. The details of the effects of Cs+ on the fabrication and performance of inorganic-organic mixed-cation perovskite solar cells examined in detail in this study are beyond the normal understanding of the adjusting band gap. It is found that a combined intercalation of Cs+ and dimethyl sulfoxide (DMSO) in PbI2-DMSO precursor film formed a strong and steady coordinated intermediate phase to retard PbI2 crystallization, suppress yellow nonperovskite δ-phase, and obtain a highly reproducible perovskite film with less defects and larger grains. The Cs-contained triple-cation-mixed perovskite Cs0.1(MA0.4FA0.6)0.9PbI3 devices yield over 20% reproducible efficiencies, superior stabilities, and fill factors of around 0.8 with a very narrow distribution.

15.
J Colloid Interface Sci ; 512: 474-479, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29096108

ABSTRACT

HYPOTHESIS: The C3N4 as a cheap and clean photocatalyst shows suitable band gap to splitting water and spectral response. However the poor conductivity of C3N4 limits the photocatalytic hydrogen evolution rate. The combination of C3N4 and high conductivity materials will enhance the separation of photo-generated carriers and thus enhance the photocatalytic activity. As many carbon materials have been tried, the mesoporous carbon should be a good candidate to solve this problem. EXPERIMENTS: A photocatalytic system with C3N4 and mesoporous carbon has been designed to test the photocatalytic performance of both the photocatalytic hydrogen evolution and the photocatalytic degradation of methylene blue. The results of EPR, EIS and PL spectra were given to further understand the photo-generated carrier and its transfer. FINDINGS: The enhancement of the highest hydrogen evolution rate is 48% from 69 to 102 µmol/h by mesoporous carbon/C3N4 sample. The existence of small amount of mesoporous carbon can facilitate the photogenerated carrier separation, thus enhancing the photocatalytic performance. In the meantime, the introduction of mesoporous carbon into C3N4 is beneficial for improving electron delocalization and conduction electrons and increasing the optical absorption.

16.
ACS Appl Mater Interfaces ; 9(32): 26937-26947, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28719969

ABSTRACT

DMF as an additive has been employed in FAI/MAI/IPA (FA= CH2(NH2)2, MA = CH3NH3, IPA = isopropanol) solution for a two-step multicycle spin-coating method in order to prepare high-quality FAxMA1-xPbI2.55Br0.45 perovskite films. Further investigation reveals that the existence of DMF in the FAI/MAI/IPA solution can facilitate perovskite conversion, improve the film morphology, and reduce crystal defects, thus enhancing charge-transfer efficiency. By optimization of the DMF amount and spin-coating cycles, compact, pinhole-free perovskite films are obtained. The nucleation mechanisms of perovskite films in our multicycle spin-coating process are suggested; that is, the introduction of DMF in the spin-coating FAI/MAI/IPA solution can lead to the formation of an amorphous phase PbX2-AI-DMSO-DMF (X = I, Br; A = FA, MA) instead of intermediate phase (MA)2Pb3I8·2DMSO. This amorphous phase, similar to that in the one-step method, can help FAI/MAI penetrate into the PbI2 framework to completely convert into the perovskite. As high as 20.1% power conversion efficiency (PCE) has been achieved with a steady-state PCE of 19.1%. Our work offers a simple repeatable method to prepare high-quality perovskite films for high-performance PSCs and also help further understand the perovskite-crystallization process.

17.
Rev Sci Instrum ; 87(12): 123107, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28040979

ABSTRACT

An opto-electro-modulated transient photovoltage/photocurrent system has been developed to probe microscopic charge processes of a solar cell in its adjustable operating conditions. The reliability of this system is carefully determined by electric circuit simulations and experimental measurements. Using this system, the charge transport, recombination and storage properties of a conventional multicrystalline silicon solar cell under different steady-state bias voltages, and light illumination intensities are investigated. This system has also been applied to study the influence of the hole transport material layer on charge extraction and the microscopic charge processes behind the widely considered photoelectric hysteresis in perovskite solar cells.

18.
Chemphyschem ; 17(1): 112-8, 2016 Jan 04.
Article in English | MEDLINE | ID: mdl-26593743

ABSTRACT

Moisture is shown to activate the reaction between PbI2 and methylammonium halides. In addition, two activating mechanisms are proposed for the formation of CH3 NH3 PbI3 and CH3 NH3 PbI3-x Clx films from a series of carefully controlled experiments. When these rapidly formed perovskite films are directly fabricated into the devices, poor photovoltaic properties are found, due to heavy surface charge recombination. However, the cell performance can be significantly enhanced to 13.63 % and to over 12 % in the steady state for CH3 NH3 PbI3 and to 15.50 % and over 14 % in the steady state for CH3 NH3 PbI3-x Clx , if the rapidly formed perovskite film is annealed. Thus, it is believed that moisture (below 60 % RH) is not a problem for the fabrication of highly efficient perovskite solar cells.

19.
Chemphyschem ; 16(4): 842-7, 2015 Mar 16.
Article in English | MEDLINE | ID: mdl-25581504

ABSTRACT

Carrier density and transport properties in the CH3 NH3 PbI3 thin film have been investigated. It is found that the carrier density, the depletion field, and the charge collection and transport properties in the CH3 NH3 PbI3 absorber film can be controlled effectively by different concentrations of reactants. That is, the carrier properties and the self-doping characteristics in CH3 NH3 PbI3 films are strongly influenced by the reaction thermodynamic and kinetic processes. Furthermore, by employing mixed solvents with ethanol and isopropanol to deposit the CH3 NH3 PbI3 film, the charge collection and transport efficiencies are improved significantly, thereby yielding an overall enhanced cell performance.

20.
Phys Chem Chem Phys ; 17(7): 4937-44, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25594083

ABSTRACT

An ultrathin AlOx layer has been deposited onto a CH3NH3PbI3 film using atomic layer deposition technology, to construct a metal-insulator-semiconductor (MIS) back contact for the hole-transporting material-free perovskite solar cell. By optimization of the ALD deposition cycles, the average power conversion efficiency (PCE) of the cell has been enhanced from 8.61% to 10.07% with a highest PCE of 11.10%. It is revealed that the improvement in cell performance with this MIS back contact is mainly attributed to the enhancement in charge collection resulting from the electron blocking effect of the AlOx layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...