Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 302
Filter
1.
Pharmacol Res ; : 107232, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825157

ABSTRACT

Type 3 resistant starch from Canna edulis (Ce-RS3) is an insoluble dietary fiber which could improve blood lipids in animals, but clinically robust evidence is still lacking. We performed a double-blind randomized controlled trial to assess the effects of Ce- RS3 on lipids in mild hyperlipidemia. One hundred and fifteen patients were included followed the recruitment criteria, and were randomly allocated to receive Ce- RS3 or placebo (native starch from Canna edulis) for 12 weeks (20g/day). In addition to serum lipids, complete blood counts, serum inflammatory factors, antioxidant indexes, and dietary survey, 16S rRNA sequencing technique was utilized to analyze the gut microbiota alterations. Targeted quantitative metabolomics (TQM) was used to detect metabolite changes. Compared with the placebo, Ce- RS3 significantly decreased levels of total cholesterol, lowdensity lipoprotein cholesterol, and non-high-density lipoprotein cholesterol, andincreased the glutathione peroxidase. Based on the 16S rRNA sequencing, TQM, thecorrelation analysis, as well as the Kyoto Encyclopedia of Genes (KEGG) and Genomes and Human Metabolome Database (HMDB) analysis, we found that Ce- RS3 could increase the abundances of genera Faecalibacterium and Agathobacter, while reduce the abundances of genera norank_f_Ruminococcaceae and Christensenellaceae_R-7_ group to regulate phenylalanine metabolism, which could reduce the fatty acid biosynthesis and fatty acid elongation in the mitochondria to lower blood lipids. Conclusively, we firstlyconfirmed the feasibility of Ce-RS3 for clinical application, which presents a novel, effective therapy for the mild hyperlipidemia. (Chictr. org. cn. Clinical study on anti-mild hyperlipidemia of Canna edulis RS3 resistant starch, ID Number: ChiCTR2200062871).

2.
Foods ; 13(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38731742

ABSTRACT

Background: A diet high in purines can impair the function of the gut microbiota and disrupt purine metabolism, which is closely associated with the onset of hyperuricemia. Dietary regulation and intestinal health maintenance are key approaches for controlling uric acid (UA) levels. Investigating the impacts of fermented foods offers potential dietary interventions for managing hyperuricemia. Methods: In this study, we isolated a strain with potent UA-degrading capabilities from "Jiangshui", a fermented food product from Gansu, China. We performed strain identification and assessed its probiotic potential. Hyperuricemic quails, induced by a high-purine diet, were used to assess the UA degradation capability of strain JS-3 by measuring UA levels in serum and feces. Additionally, the UA degradation pathways were elucidated through analyses of the gut microbiome and fecal metabolomics. Results: JS-3, identified as Lacticaseibacillus paracasei, was capable of eliminating 16.11% of uric acid (UA) within 72 h, rapidly proliferating and producing acid within 12 h, and surviving in the gastrointestinal tract. Using hyperuricemic quail models, we assessed JS-3's UA degradation capacity. Two weeks after the administration of JS-3 (2 × 108 cfu/d per quail), serum uric acid (SUA) levels significantly decreased to normal levels, and renal damage in quails was markedly improved. Concurrently, feces from the JS-3 group demonstrated a significant degradation of UA, achieving up to 49% within 24 h. 16S rRNA sequencing revealed JS-3's role in gut microbiota restoration by augmenting the probiotic community (Bifidobacterium, Bacteroides unclassified_f-Lachnospiraceae, and norank_fynorank_o-Clostridia_UCG-014) and diminishing the pathogenic bacteria (Macrococus and Lactococcus). Corresponding with the rise in short-chain fatty acid (SCFA)-producing bacteria, JS-3 significantly increased SCFA levels (p < 0.05, 0.01). Additionally, JS-3 ameliorated metabolic disturbances in hyperuricemic quails, influencing 26 abnormal metabolites predominantly linked to purine, tryptophan, and bile acid metabolism, thereby enhancing UA degradation and renal protection. Conclusions: For the first time, we isolated and identified an active probiotic strain, JS-3, from the "Jiangshui" in Gansu, used for the treatment of hyperuricemia. It modulates host-microbiome interactions, impacts the metabolome, enhances intestinal UA degradation, reduces levels of SUA and fecal UA, alleviates renal damage, and effectively treats hyperuricemia without causing gastrointestinal damage. In summary, JS-3 can serve as a probiotic with potential therapeutic value for the treatment of hyperuricemia.

3.
Materials (Basel) ; 17(10)2024 May 19.
Article in English | MEDLINE | ID: mdl-38793518

ABSTRACT

In recent years, asphalt pavement has been subjected to varied environmental conditions during its service life, conditions that predispose it to deformation and cracking. To enhance the performance of asphalt pavement, rock asphalt has been selected as a modifier due to its good compatibility with virgin asphalt binder and its ability to improve the fatigue cracking resistance of asphalt mixtures. Although scholars have conducted some studies on rock asphalt mixtures, research on the fatigue and self-healing performance of these mixtures under conditions such as ultraviolet (UV) aging and freeze-thaw remains limited. This paper presents findings from a study that employs a combined fatigue-healing test to assess the impact of such complex environmental factors on the fatigue and self-healing properties of fine aggregate matrix (FAM) mixtures containing three types of rock asphalts, i.e., Buton, Qingchuan (QC), and Uintaite Modifier (UM). The analysis of fatigue-healing test results, grounded in viscoelastic continuum damage (VECD) theory, indicates that rock asphalt can extend the fatigue life of FAM mixtures, albeit with a concomitant decrease in their self-healing capabilities. The study further reveals that UV aging, freeze-thaw, and UV aging-freeze-thaw conditions all led to a diminution in the fatigue and self-healing properties of FAM mixtures. However, FAM mixtures containing rock asphalt demonstrated greater resilience against these reductions. Atomic force microscope (AFM) results indicate that UV aging reduced the number of bee-structures and enlarged their area, whereas the incorporation of rock asphalt enhanced the uniformity of these structures' distribution, thereby improving the fatigue cracking resistance of FAM mixtures. Fourier transform infrared spectroscopy (FTIR) analysis reveals that while UV aging increased the carbonyl and sulfoxide indices within the asphalt binder, rock asphalt is effective in mitigating this effect to a certain degree, thereby enhancing the aging resistance of FAM mixtures.

4.
Int J Biol Macromol ; : 132340, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38816293

ABSTRACT

In this study, the high amylose corn starch and Canna edulis native starch were compounded with lauric acid and fermented by human fecal inoculation in vitro. Changes in beneficial metabolite profile and microbiota composition were evaluated. The structural properties showed that both NS-12C and HAMS-12C formed V-shaped crystals under the same preparation method, but NS-12C had a higher composite index and resistance content than HAMS-12C. At the end of fermentation, the starch-lauric acid complexes prepared from the two types of starch significantly promoted the formation of short-chain fatty acids and the contents of acetic acid, butyric acid and valeric acid produced by NS-12C were higher than those of HAMS-12C(p>0.05). HAMS-12C and NS-12C both increased the relative abundance of Blautia. Notably, NS-12C also increased the relative abundance of beneficial bacteria Bifidobacterium and Meganomas, while HAMS-12C did not. These results suggested that this effect may be related to starch type and provide a basis for designing and producing functional foods to improve intestinal health in Canna edulis native starch.

5.
Sensors (Basel) ; 24(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732816

ABSTRACT

Target detection technology based on unmanned aerial vehicle (UAV)-derived aerial imagery has been widely applied in the field of forest fire patrol and rescue. However, due to the specificity of UAV platforms, there are still significant issues to be resolved such as severe omission, low detection accuracy, and poor early warning effectiveness. In light of these issues, this paper proposes an improved YOLOX network for the rapid detection of forest fires in images captured by UAVs. Firstly, to enhance the network's feature-extraction capability in complex fire environments, a multi-level-feature-extraction structure, CSP-ML, is designed to improve the algorithm's detection accuracy for small-target fire areas. Additionally, a CBAM attention mechanism is embedded in the neck network to reduce interference caused by background noise and irrelevant information. Secondly, an adaptive-feature-extraction module is introduced in the YOLOX network's feature fusion part to prevent the loss of important feature information during the fusion process, thus enhancing the network's feature-learning capability. Lastly, the CIoU loss function is used to replace the original loss function, to address issues such as excessive optimization of negative samples and poor gradient-descent direction, thereby strengthening the network's effective recognition of positive samples. Experimental results show that the improved YOLOX network has better detection performance, with mAP@50 and mAP@50_95 increasing by 6.4% and 2.17%, respectively, compared to the traditional YOLOX network. In multi-target flame and small-target flame scenarios, the improved YOLO model achieved a mAP of 96.3%, outperforming deep learning algorithms such as FasterRCNN, SSD, and YOLOv5 by 33.5%, 7.7%, and 7%, respectively. It has a lower omission rate and higher detection accuracy, and it is capable of handling small-target detection tasks in complex fire environments. This can provide support for UAV patrol and rescue applications from a high-altitude perspective.

6.
J Pharm Biomed Anal ; 245: 116194, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38704878

ABSTRACT

A miniature mass spectrometer (mMS) based point-of-care testing (POCT) method was evaluated for on-site detecting the hypertension drugs, amlodipine and benazepril. The instrument parameters, including voltage, ISO1, ISO2, and CID, were optimized, under which the target compounds could be well detected in MS2. When these two drugs were injected simultaneously, the mutual ionization inhibition and mutual reduction between amlodipine and benazepril were evaluated. This phenomenon was severe on the precursor ions but had a small impact on the product ions, thus making this POCT method suitable for analysis using product ions. Finally, the method was validated and applied. The blood samples from patients were tested one hour after oral administration of the drugs (20 mg), and the benazepril was quantitatively analyzed using a standard curve, with detected concentrations ranging from 190.6 to 210 µg L-1 and a relative standard deviation (RSD) of 8.6 %. In summary, amlodipine has low sensitivity and can only be detected at higher concentrations, while benazepril has high sensitivity, good linearity, and even meets semi-quantitative requirements. The research results of this study are of great clinical significance for monitoring blood drug concentrations during hypertension medication, predicting drug efficacy, and customizing individualized medication plans.


Subject(s)
Amlodipine , Antihypertensive Agents , Benzazepines , Amlodipine/blood , Humans , Benzazepines/blood , Antihypertensive Agents/blood , Antihypertensive Agents/administration & dosage , Mass Spectrometry/methods , Point-of-Care Testing , Reproducibility of Results , Limit of Detection , Point-of-Care Systems
7.
J Phys Chem A ; 128(19): 3801-3811, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38709493

ABSTRACT

The 2-(2-aminophenyl)naphthalene molecule attracted much attention due to excited-state intramolecular proton transfer (ESIPT) from an amino NH2 group to a carbon atom of an adjacent aromatic ring. The ESIPT mechanisms of 2-(2-aminophenyl)naphthalene are still unclear. Herein, the decay pathways of this molecule in vacuum were investigated by combining static electronic structure calculations and nonadiabatic dynamics simulations. The calculations indicated the existence of two stable structures (S0-1 and S0-2) in the S0 and S1 states. For the S0-1 isomer, upon excitation to the Franck-Condon point, the system relaxed to the S1 minimum quickly, and then there exist four decay pathways (two ESIPT ones and two decay channels with C atom pyramidalization). In the ESIPT decay pathways, the system encounters the S1S0-PT-1 or S1S0-PT-2 conical intersection, which funnels the system rapidly to the S0 state. In the other two pathways, the system de-excited from the S1 to the S0 state via the S1S0-1 or S1S0-2 conical intersection. For the S0-2 structure, the decay pathways were similar to those of S0-1. The dynamics simulations showed that 75 and 69% of trajectories experienced the two ESIPT conical intersections for the S0-1 and S0-2 structures, respectively. Our simulations showed that the lifetime of the S1 state of S0-1 (S0-2) is estimated to be 358 (400) fs. Notably, we not only found the detailed reaction mechanism of the system but also found that the different ground-state configurations of this system have little effect on the reaction mechanism in vacuum.

8.
Int Ophthalmol ; 44(1): 166, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38557801

ABSTRACT

PURPOSE: To evaluate the safety and effectiveness of various treatment modalities in patients with diabetic retinopathy (DR) who underwent cataract surgery. METHODS: A comprehensive search for randomized controlled trials (RCTs) was conducted using the PubMed, Embase, Cochrane Library, and CNKI databases up to December 22, 2021. The safety and efficacy of treatment modalities were assessed using the risk ratio (RR) to compare the progression of DR and the mean difference to evaluate the best corrected visual acuity (BCVA) and macular thickness (MT). RESULTS: The meta-analysis of the RCTs revealed that anti-VEGF (anti-vascular endothelial growth factor) drugs significantly reduced the progression of DR [RR: 0.37 (95%CI 0.19, 0.70), P = 0.002] and improved BCVA [mean difference = - 0.06 (- 0.12, - 0.01), P = 0.03] in patients with pre-existing DR who underwent cataract surgery. Steroid drugs also showed a significant reduction in macular thickness [mean difference = - 55.63 (- 90.73, - 20.53), I2 = 56%, P = 0.002] in DR patients two weeks after cataract surgery compared to the control group. The safety profiles of different management options did not differ significantly. CONCLUSION: The present meta-analysis suggests that anti-VEGF drugs can effectively slow down the progression of diabetic retinopathy, improve BCVA, and reduce MT in DR patients who underwent cataract surgery. Steroid drugs also show promise in reducing MT. However, further studies with larger sample sizes are required to compare the efficacy and safety of different management options in a multi-center clinical setting.


Subject(s)
Cataract , Diabetes Mellitus , Diabetic Retinopathy , Macular Edema , Humans , Diabetic Retinopathy/complications , Diabetic Retinopathy/drug therapy , Ranibizumab/therapeutic use , Bevacizumab/therapeutic use , Vascular Endothelial Growth Factor A , Macular Edema/drug therapy , Steroids/therapeutic use
9.
J Neuroinflammation ; 21(1): 99, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632655

ABSTRACT

BACKGROUND: The pathogenesis of memory impairment, a common complication of chronic neuropathic pain (CNP), has not been fully elucidated. Schwann cell (SC)-derived extracellular vesicles (EVs) contribute to remote organ injury. Here, we showed that SC-EVs may mediate pathological communication between SCs and hippocampal neurons in the context of CNP. METHODS: We used an adeno-associated virus harboring the SC-specific promoter Mpz and expressing the CD63-GFP gene to track SC-EVs transport. microRNA (miRNA) expression profiles of EVs and gain-of-function and loss-of-function regulatory experiments revealed that miR-142-5p was the main cargo of SC-EVs. Next, luciferase reporter gene and phenotyping experiments confirmed the direct targets of miR-142-5p. RESULTS: The contents and granule sizes of plasma EVs were significantly greater in rats with chronic sciatic nerve constriction injury (CCI)than in sham rats. Administration of the EV biogenesis inhibitor GW4869 ameliorated memory impairment in CCI rats and reversed CCI-associated dendritic spine damage. Notably, during CCI stress, SC-EVs could be transferred into the brain through the circulation and accumulate in the hippocampal CA1-CA3 regions. miR-142-5p was the main cargo wrapped in SC-EVs and mediated the development of CCI-associated memory impairment. Furthermore, α-actinin-4 (ACTN4), ELAV-like protein 4 (ELAVL4) and ubiquitin-specific peptidase 9 X-linked (USP9X) were demonstrated to be important downstream target genes for miR-142-5p-mediated regulation of dendritic spine damage in hippocampal neurons from CCI rats. CONCLUSION: Together, these findings suggest that SCs-EVs and/or their cargo miR-142-5p may be potential therapeutic targets for memory impairment associated with CNP.


Subject(s)
Extracellular Vesicles , MicroRNAs , Neuralgia , Rats , Animals , MicroRNAs/metabolism , Neuralgia/metabolism , Neurons/metabolism , Schwann Cells/metabolism , Extracellular Vesicles/metabolism
10.
Foods ; 13(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38672863

ABSTRACT

The impact of COVID-19 has boosted growth in the takeaway and medical industries but has also generated a large amount of plastic waste. Peanut shells (PS) are produced in large quantities and are challenging to recycle in China. Co-pyrolysis of peanut shells (PS) and polypropylene (PP) is an effective method for processing plastic waste and energy mitigation. Thermogravimetric analysis was conducted on PS, PP, and their blends (PS-PP) at different heating rates (10, 20, 30 °C·min-1). The results illustrated that the co-pyrolysis process of PS-PP was divided into two distinct decomposition stages. The first stage (170-400 °C) was predominantly linked to PS decomposition. The second stage (400-520 °C) resulted from the combinations of PS and PP's thermal degradations, with the most contribution from PP degradation. With the increase in heating rate, thermogravimetric hysteresis appeared. Kinetic analysis indicated that the co-pyrolysis process reduced the individual pyrolysis activation energy, especially in the second stage, with a correlation coefficient (R2) generally maintained above 0.95. The multi-level reaction mechanism function model can effectively reveal the co-pyrolysis process mechanism. PS proved to be high-quality biomass for co-pyrolysis with PP, and all mixtures exhibited synergistic effects at a mixing ratio of 1:1 (PS1-PP1). This study accomplished effective waste utilization and optimized energy consumption. It holds significance in determining the interaction mechanism of mixed samples in the co-pyrolysis process.

11.
Article in English | MEDLINE | ID: mdl-38581929

ABSTRACT

Nandrolone (NT) is a type of androgen anabolic steroid that is often illegally used in cattle farming, leading to unpredictable harm to human health via the food chain. In this study, a rapid detection method for NT in the samples of cattle farming was established using a portable mass spectrometer. The instrument parameters were optimized, including a thermal desorption temperature of 220 °C, a pump speed of 30 %, an APCI ionization voltage of 3900 v, and an injection volume of 6 µL. The samples of bovine urine, feed, sewage, and tissue were selected, and extracted using a solution of methanol:acetonitrile (1:1, v/v), followed by spiking a NT standard solution (1000 ng·mL-1) and ionization through the APCI ion source for detection. The results showed that NT could not be detected in beef and feed due to the complexity of the matrix, while clear signals of NT ions were observed in bovine urine and sewage samples, with LODs of 1000 and 100 ng·mL-1, respectively. Furthermore, quantitative analysis was attempted, and a good linear relationship (R2 = 0.9952) was observed for NT in sewage within the range of 100 to 1000 ng·mL-1. At spiked levels of 100, 500, 1000 and 2000 ng mL-1, the recovery rates ranged from 74.3 % to 92.8 %, with a relative standard deviation (n = 6) of less than 15 %. In conclusion, this detection method offers the advantages of simplicity, rapidity, strong timeliness, and specificity, making it suitable for on-site detection. It can be used for qualitative screening of nandrolone in bovine urine and quantitative analysis of nandrolone in sewage.


Subject(s)
Limit of Detection , Nandrolone , Cattle , Animals , Nandrolone/analysis , Nandrolone/urine , Linear Models , Reproducibility of Results , Mass Spectrometry/methods , Sewage/chemistry , Sewage/analysis , Animal Feed/analysis , Anabolic Agents/urine , Anabolic Agents/analysis
12.
Viruses ; 16(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38675901

ABSTRACT

As SARS-CoV-2 continues to evolve and COVID-19 cases rapidly increase among children and adults, there is an urgent need for a safe and effective vaccine that can elicit systemic and mucosal humoral immunity to limit the emergence of new variants. Using the Chinese Hu191 measles virus (MeV-hu191) vaccine strain as a backbone, we developed MeV chimeras stably expressing the prefusion forms of either membrane-anchored, full-length spike (rMeV-preFS), or its soluble secreted spike trimers with the help of the SP-D trimerization tag (rMeV-S+SPD) of SARS-CoV-2 Omicron BA.2. The two vaccine candidates were administrated in golden Syrian hamsters through the intranasal or subcutaneous routes to determine the optimal immunization route for challenge. The intranasal delivery of rMeV-S+SPD induced a more robust mucosal IgA antibody response than the subcutaneous route. The mucosal IgA antibody induced by rMeV-preFS through the intranasal routine was slightly higher than the subcutaneous route, but there was no significant difference. The rMeV-preFS vaccine stimulated higher mucosal IgA than the rMeV-S+SPD vaccine through intranasal or subcutaneous administration. In hamsters, intranasal administration of the rMeV-preFS vaccine elicited high levels of NAbs, protecting against the SARS-CoV-2 Omicron BA.2 variant challenge by reducing virus loads and diminishing pathological changes in vaccinated animals. Encouragingly, sera collected from the rMeV-preFS group consistently showed robust and significantly high neutralizing titers against the latest variant XBB.1.16. These data suggest that rMeV-preFS is a highly promising COVID-19 candidate vaccine that has great potential to be developed into bivalent vaccines (MeV/SARS-CoV-2).


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 Vaccines , COVID-19 , Immunity, Humoral , Immunity, Mucosal , Immunoglobulin A , Measles virus , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , COVID-19/prevention & control , COVID-19/immunology , COVID-19 Vaccines/immunology , COVID-19 Vaccines/administration & dosage , Measles virus/immunology , Measles virus/genetics , Cricetinae , Immunoglobulin A/blood , Humans , Administration, Intranasal , Mesocricetus , Female
13.
Foods ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38472830

ABSTRACT

In this study, colorimetric indicator nanofiber films based on ethyl cellulose (EC)/gelatin (G) incorporating purple sweet potato anthocyanins (PSPAs) were designed via electrospinning technology for monitoring and maintaining the freshness of pork. The film presented good structural integrity and stability in a humid environment with water vapor permeability (WVP) of 6.07 ± 0.14 × 10-11 g·m-1s-1Pa-1 and water contact angle (WCA) of 81.62 ± 1.43°. When PSPAs were added into the nanofiber films, the antioxidant capacity was significantly improved (p < 0.05) with a DPPH radical scavenging rate of 68.61 ± 1.80%. The nanofiber films showed distinguishable color changes as pH changes and was highly sensitive to volatile ammonia than that of casting films. In the application test, the film color changed from light pink (fresh stage) to light brown (secondary freshness stage) and then to brownish green (spoilage stage), indicating that the nanofiber films can be used to detect the real-time freshness of pork during storage. Meanwhile, it could prolong the shelf life of pork by inhibiting the oxidation degree. Hence, these results suggested that the EC/G/PSPA film has promising future for monitoring freshness and extending shelf life of pork.

14.
Int J Biol Macromol ; 265(Pt 1): 130700, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38458281

ABSTRACT

This study investigated the in vitro fermentation characteristics of different structural types of Canna edulis resistant starch (RS). RS3 was prepared through a double enzyme hydrolysis method, and RS4 (OS-starch and cross-linked starch) was prepared using octenyl succinic anhydride and sodium trimetaphosphate/sodium tripolyphosphate, respectively. The RS3 and RS4 samples were structurally analyzed using scanning electron microscopy, Fourier-transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction analysis. This was followed by in vitro fermentation experiments. The results revealed microstructure differences in the two groups of starch samples. Compared to native starch, RS3 and RS4 exhibited a lower degree of order and endothermic energy, with lower crystallinity (RS3: 29.59 ± 1.11 %; RS4 [OS-starch]: 28.01 ± 1.32 %; RS4 [cross-linked starch]: 30.44 ± 1.73 %) than that in native starch (36.29 ± 0.89 %). The RS content was higher in RS3 (63.40 ± 2.85 %) and RS4 (OS-starch: 71.21 ± 1.28 %; cross-linked starch: 74.33 ± 0.643 %) than in native starch (57.71 ± 2.95 %). RS3 and RS4 exhibited slow fermentation rates, promoting the production of short-chain fatty acids. RS3 and cross-linked starch significantly increased the production of acetate and butyrate. Moreover, RS3 significantly promoted the abundance of Lactobacillus, while OS-starch and cross-linked starch significantly enhanced the abundance of Dorea and Coprococcus, respectively. Hence, the morphological structure and RS content of the samples greatly influenced the fermentation rate. Moreover, the different varieties of RS induced specific gut microbial regulation. Hence, they show potential applications in functional foods for tailored gut microbiota management.


Subject(s)
Gastrointestinal Microbiome , Polyphosphates , Starch , Humans , Starch/chemistry , Fermentation , Hydrolysis , Fatty Acids, Volatile , Resistant Starch
15.
Int J Biol Macromol ; 265(Pt 1): 130813, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38479667

ABSTRACT

In this study, an active and intelligent nanofilm for monitoring and maintaining the freshness of pork was developed using ethyl cellulose/gelatin matrix through electrospinning, with the addition of natural purple sweet potato anthocyanin. The nanofilm exhibited discernible color variations in response to pH changes, and it demonstrated a higher sensitivity towards volatile ammonia compared with casting film. Notably, the experimental findings regarding the wettability and pH response performance indicated that the water contact angle between 70° and 85° was more favorable for the smart response of pH sensitivity. Furthermore, the film exhibited desirable antioxidant activities, water vapor barrier properties and also good antimicrobial activities with the incorporation of ε-polylysine, suggesting the potential as a food packaging film. Furthermore, the application preservation outcomes revealed that the pork packed with the nanofilm can prolong shelf life to 6 days, more importantly, a distinct color change aligned closely with the points indicating the deterioration of the pork was observed, changing from light pink (indicating freshness) to light brown (indicating secondary freshness) and then to brownish green (indicating spoilage). Hence, the application of this multifunctional film in intelligent packaging holds great potential for both real-time indication and efficient preservation of the freshness of animal-derived food items.


Subject(s)
Cellulose/analogs & derivatives , Pork Meat , Red Meat , Swine , Animals , Gelatin , Animal Feed , Anthocyanins , Food Packaging , Hydrogen-Ion Concentration
16.
Arch Microbiol ; 206(4): 154, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38478112

ABSTRACT

Although the trans-translation system is a promising target for antcibiotic development, its antibacterial mechanism in Klebsiella pneumoniae (KP) is unclear. Considering that tmRNA was the core component of trans-translation, this study firstly investigated phenotypic changes caused by various environmental stresses in KP lacking trans-translation activities (tmRNA-deleted), and then aimed to evaluate antibacterial activities of the trans-translation-targeting antibiotic combination (tobramycin/ciprofloxacin) in clinical KP isolates based on inhibition activities of aminoglycosides against trans-translation. We found that the tmRNA-deleted strain P4325/ΔssrA was significantly more susceptible than the wild-type KP strain P4325 under environments with hypertonicity (0.5 and 1 M NaCl), hydrogen peroxide (40 mM), and UV irradiation. No significant differences in biofilm formation and survivals under human serum were observed between P4325/ΔssrA and P4325. tmRNA deletion caused twofold lower MIC values for aminoglycosides. As for the membrane permeability, tmRNA deletion increased ethidium bromide (EtBr) uptake of KP in the presence or absence of verapamil and carbonyl cyanide-m-chlorophenylhydrazone (CCCP), decreased EtBr uptake in presence of reserpine in P4325/ΔssrA, and reduced EtBr efflux in P4325/ΔssrA in the presence of CCCP. The time-kill curve and in vitro experiments revealed significant bactericidal activities of the tmRNA-targeting aminoglycoside-based antibiotic combination (tobramycin/ciprofloxacin). Thus, the corresponding tmRNA-targeting antibiotic combinations (aminoglycoside-based) might be effective and promising treatment options against multi-drug resistant KP.


Subject(s)
Ciprofloxacin , Klebsiella pneumoniae , Humans , Ciprofloxacin/pharmacology , Klebsiella pneumoniae/genetics , Carbonyl Cyanide m-Chlorophenyl Hydrazone/pharmacology , Anti-Bacterial Agents/pharmacology , Aminoglycosides/pharmacology , Tobramycin/pharmacology , Microbial Sensitivity Tests
17.
Methods Mol Biol ; 2774: 259-267, 2024.
Article in English | MEDLINE | ID: mdl-38441770

ABSTRACT

S-Adenosyl methionine (SAM) is a critical metabolite involved in numerous cellular processes, including DNA methylation and gene expression regulation. Understanding the spatiotemporal dynamics of SAM within living cells is essential for deciphering its roles in maintaining cell homeostasis and in disease development. Here, we describe a protocol based on a recently reported SAM sensor exploiting a fluorogenic RNA and an RNA three-way junction for visualizing SAM dynamics in cultured mammalian cells.


Subject(s)
Coloring Agents , DNA Methylation , Animals , Diagnostic Imaging , RNA , S-Adenosylmethionine , Mammals
18.
J Ethnopharmacol ; 326: 117905, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38364934

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Pi-pa-run-fei-tang (PPRFT), a traditional Chinese medicine formula with long-standing history, demonstrated beneficial effect on chronic cough. However, the mechanism underlying efficacy unclear. In current research, we explored the impact and molecular mechanism of chronic cough mouse stimulating with capsaicin combined with ammonia. AIM OF THE STUDY: To investigate the metabolic modulating effects, and potential mechanisms underlying the therapeutic effect of PPRFT in chronic cough. MATERIALS AND METHODS: Chronic cough mouse models were created by stimulating mice by capsaicin combined with ammonia. Number of coughs and cough latency within 2 min were recorded. With lung tissue and serum samples collected for histopathology, metabolomics, RT-qPCR, immunohistochemistry, and WB analysis. Lymphocytes were isolated and flow cytometric assays were conducted to evaluate the differentiation between Th17 and Treg cell among CD4+ cells. RESULTS: Results indicated that PPRFT obviously reduced the number of coughs, prolonged cough latency, reduced inflammatory cell infiltration and lung tissues damage, and decreased the serum level of IL-6, IL-1ß, TNF-α, and IL-17 while increasing IL-10 levels. Notably, PPRFT suppressed Th17 cell divergence and promoted Treg cell divergence. Furthermore, serum metabolomic assays showed that 46 metabolites differed significantly between group, with 35 pathways involved. Moreover, mRNA levels of IL-6, NF-κB, IL-17, RORγT, JAK2, STAT3, PI3K and AKT in lung tissues remarkably reduced and mRNA levels of IL-10 and FOXP3 were elevated after PPRFT pretreatment. Additionally, PPRFT treatments decreased the protein levels of IL-6, NF-κB, IL-17, RORγT, p-JAK2, p-STAT3, p-PI3K, and p-AKT and increased the protein levels of IL-10 and FOXP3, but no significantly effects to the levels on JAK2, STAT3, PI3K, and AKT in the lungs. CONCLUSION: Conclusively, our result suggested the effect with PPRFT on chronic cough may be mediated through IL-6/JAK2/STAT3 and PI3K/AKT/NF-κB pathway, which regulate the differentiation between Th17 and Treg cell. This beneficial effect of PPRFT in capsaicin and ammonia-stimulated chronic cough mice indicates its potential application in treating chronic cough.


Subject(s)
Cytokines , Interleukin-10 , Mice , Animals , Interleukin-10/metabolism , Cytokines/metabolism , Interleukin-17/metabolism , NF-kappa B/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Ammonia/metabolism , Interleukin-6/metabolism , Chronic Cough , Capsaicin/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , T-Lymphocytes, Regulatory , Forkhead Transcription Factors/metabolism , RNA, Messenger/metabolism , Th17 Cells
19.
Nanoscale ; 16(11): 5537-5545, 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38414383

ABSTRACT

As one of the most fundamental building blocks of life, RNA plays critical roles in diverse biological processes, from X chromosome inactivation, genome stability maintenance, to embryo development. Being able to visualize the localization and dynamics of RNA can provide critical insights into these fundamental processes. In this review, we provide an overview of current methods for live-cell RNA imaging with a focus on methods for visualizing RNA in living mammalian cells with single-molecule resolution.


Subject(s)
Diagnostic Imaging , RNA , Animals , Mammals
20.
J Control Release ; 367: 572-586, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38301926

ABSTRACT

The cytoskeleton facilitates tumor cells invasion into the bloodstream via vasculogenic mimicry (VM) for "attack", and protects cells against external threats through cytoskeletal remodeling and tunneling nanotubes (TNTs) for "defense". However, the existing strategies involving cytoskeleton are not sufficient to eliminate tumor metastasis due to mitochondrial energy supply, both within tumor cells and from outside microenvironment. Here, considering the close relationship between cytoskeleton and mitochondria both in location and function, we construct a nano-platform that combats the "attack" and "defense" of cytoskeleton in the cascading metastasis. The nano-platform is composed of KFCsk@LIP and KTMito@LIP for the cytoskeletal collapse and mitochondrial dysfunction. KFCsk@LIP prevents the initiation and circulation of cascading tumor metastasis, but arouses limited suppression in tumor cell proliferation. KTMito@LIP impairs mitochondria to trigger apoptosis and impede energy supply both from inside and outside, leading to an amplified effect for metastasis suppression. Further mechanisms studies reveal that the formation of VM and TNTs are seriously obstructed. Both in situ and circulating tumor cells are disabled. Subsequently, the broken metastasis cascade results in a remarkable anti-metastasis effect. Collectively, based on the nano-platform, the cytoskeletal collapse with synchronous mitochondrial dysfunction provides a potential therapeutic strategy for cascading tumor metastasis suppression.


Subject(s)
Mitochondrial Diseases , Neovascularization, Pathologic , Humans , Neovascularization, Pathologic/drug therapy , Cell Line, Tumor , Cytoskeleton/pathology , Cell Movement
SELECTION OF CITATIONS
SEARCH DETAIL
...