Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
BMC Pediatr ; 22(1): 732, 2022 12 23.
Article in English | MEDLINE | ID: mdl-36564727

ABSTRACT

BACKGROUND: Antibiotic-impregnated calcium sulfate has excellent curative efficacy in chronic osteomyelitis. However, its curative efficacy in pediatric hematogenous osteomyelitis has not been sufficiently studied. The purpose of this study was to evaluate the curative effects of antibiotic-impregnated calcium sulfate in the treatment of pediatric hematogenous osteomyelitis. METHODS: Overall, twenty-one pediatric patients with hematogenous osteomyelitis treated at our hospital between 2013 and 2018 were included for assessment. The clinical history, clinical manifestation, infection recurrence rate, sinus leakage, incision leakage, pathological fractures, bone growth and surgical procedures were analyzed. RESULTS: The infection recurrence rate was 0% (0/21) at a minimum of 31 months (range 31 to 91 months) of follow-up. Postoperative incision leakage was found in one pediatric patient. Osteolysis was found in one pediatric patient. Acceleration of bone growth occurred in one pediatric patient. Retardation of bone growth occurred in one pediatric patient. Genu valgus deformity occurred in one pediatric patient. CONCLUSIONS: Although noninfectious complications occurred, the curative effect of antibiotic-impregnated calcium sulfate in pediatric hematogenous osteomyelitis was satisfactory.


Subject(s)
Anti-Bacterial Agents , Osteomyelitis , Humans , Child , Anti-Bacterial Agents/therapeutic use , Calcium Sulfate/therapeutic use , Calcium Sulfate/pharmacology , Osteomyelitis/drug therapy , Treatment Outcome , Debridement/adverse effects , Debridement/methods
2.
World J Stem Cells ; 12(9): 986-1000, 2020 Sep 26.
Article in English | MEDLINE | ID: mdl-33033559

ABSTRACT

Musculoskeletal disorders are the leading causes of disability and result in reduced quality of life. The neuro-osteogenic network is one of the most promising fields in orthopaedic research. Neuropeptide Y (NPY) system has been reported to be involved in the regulations of bone metabolism and homeostasis, which also provide feedback to the central NPY system via NPY receptors. Currently, potential roles of peripheral NPY in bone metabolism remain unclear. Growing evidence suggests that NPY can regulate biological actions of bone marrow mesenchymal stem cells, hematopoietic stem cells, endothelial cells, and chondrocytes via a local autocrine or paracrine manner by different NPY receptors. The regulative activities of NPY may be achieved through the plasticity of NPY receptors, and interactions among the targeted cells as well. In general, NPY can influence proliferation, apoptosis, differentiation, migration, mobilization, and cytokine secretion of different types of cells, and play crucial roles in the development of bone delayed/non-union, osteoporosis, and osteoarthritis. Further basic research should clarify detailed mechanisms of action of NPY on stem cells, and clinical investigations are also necessary to comprehensively evaluate potential applications of NPY and its receptor-targeted drugs in management of musculoskeletal disorders.

3.
Nan Fang Yi Ke Da Xue Xue Bao ; 38(6): 669-676, 2018 Jun 20.
Article in Chinese | MEDLINE | ID: mdl-29997088

ABSTRACT

OBJECTIVE: To investigate the effects of neuropeptide Y (NPY) Y1 receptor antagonist PD160170 in promoting osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and accelerating healing of femoral defect in rats. METHODS: The third generation of rat BMSCs were treated with PBS (control) or 10-6, 10-7, or 10-8 mol/L NPY Y1 receptor antagonist PD160170. After 7 and 14 days of treatment, the cells were examined for osteogenic differentiation with alkaline phosphatase (ALP) and alizarin red staining. At 7 and 21 days of treatment, the mRNA and protein expressions of collagen type I (COLI), osteocalcin (OCN) and Runt-related transcription factor 2 (Runx2) in the cells were detected using q-PCR and Westem Blotting. In a male SD rat model (body weight 300∓20 g) of bilateral femoral condyle defects (2.5 mm in diameter), the effect of daily local injection of 0.2 mL PD160170 (10-6 and 10-8 mol/L, for 28 consecutive days) in promoting bone defect repair was evaluated with micro-CT scans. RESULTS: ALP and alizarin red staining showed that the BMSCs treated with PD160170, at the optimal concentration of 10-8 mol/L, contained more intracellular cytoplasmic brown particles and mineralized nodules in extracellular matrix than PBS-treated cells. PD160170 (10-8 mol/L) significantly up-regulated the mRNA and protein expressions of COLI at day 7 and those of OCN and Runx2 at day 21 (P<0.05). In the rat models of femoral bone defect, the volume/tissue volume ratio, bone mineral density and the number of bone trabeculae were significantly greater in 10-6 mol/L PD160170 group than in the control group (P<0.05), but the bone trabecular thickness (P=0.07) and bone volume (P=0.35) were similar between the two groups. CONCLUSION: NPY Y1 receptor antagonist PD160170 can promote osteogenic differentiation of BMSCs and healing of femoral defects in rats, suggesting the potential of therapeutic strategies targeting NPY Y1 receptor signaling in the prevention and treatment of bone fracture and osteoporosis.


Subject(s)
Aminoquinolines/pharmacology , Bone Marrow Cells/drug effects , Cell Differentiation/drug effects , Femoral Fractures/drug therapy , Fracture Healing/drug effects , Mesenchymal Stem Cells/drug effects , Osteogenesis , Receptors, Neuropeptide Y/antagonists & inhibitors , Sulfones/pharmacology , Animals , Bone Marrow Cells/cytology , Cells, Cultured , Male , Mesenchymal Stem Cells/cytology , Rats , Rats, Sprague-Dawley
4.
Orthop Surg ; 9(1): 28-33, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28371495

ABSTRACT

OBJECTIVE: To investigate the optimal posterior screw placement and the geometry of safe zones for screw insertion in the talar neck. METHODS: Computed tomography data for 15 normal feet were imported into Mimics 10.01 software for 3-dimensional reconstruction; 4.0-mm-diameter screws were simulated from the lateral tubercle of the posterior process of the talus to the talar head. The range of screw paths trajectories and screw lengths at nine locations that did not breach the cortex of the talus were evaluated. In addition, the farthest (point a) and nearest point (point b) of the safe zone to the subtalar joint at each location, the anteversion angle (angle A), which is parallel to the sagittal plane, and the horizontal angle (angle B), which is perpendicular to the sagittal plane, were measured. RESULTS: The safe zone was mainly between the 30% location and the 60% location; the width of each safe zone was 13.6° ± 1.4°; the maximum height of each safe zone was 7.8° ± 1.2°. The height of the safe zone was lowest at the 30% location (4.5°) and highest at the 50% location (7.3°). The mixed safe zone of all tali was between the 50% location and the 60% location. When a screw was inserted at point a, the safe entry distance (screw length) ranged from 48.8 to 49.5 mm, and when inserted to point b, the distance ranged from 48.2 to 48.9 mm. And inserting a 48.7 mm screw, 5.6° laterally and 7.4° superiorly, from the lateral tubercle of the posterior process of the talus towards the talar head is safest. CONCLUSION: The safe zone of posterior screw fixation have been defined applying to most talus, assuming the fractures are well reduced, this may strengthen the stability, shorten the operation time and reduce the incidence of surgical complications.


Subject(s)
Bone Screws , Fractures, Bone/surgery , Talus/injuries , Talus/surgery , Adult , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Fractures, Bone/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Male , Talus/anatomy & histology , Talus/diagnostic imaging , Tomography, X-Ray Computed/methods , Young Adult
5.
Neuropeptides ; 56: 105-13, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26707636

ABSTRACT

Neuropeptide Y (NPY) is a neuropeptide secreted by sensory nerve fibers distributed in the marrow and vascular canals of bone tissue. However, the effect of NPY on the osteogenic ability of bone marrow mesenchymal stem cells (BMSCs) remains controversial and has not been thoroughly investigated. To explore the osteogenic activity and the migration and VEGF expression capabilities of BMSCs affected by NPY, as well as the underlying mechanisms, we investigated the potential relationships among NPY, osteoblastic differentiation, angiogenesis and canonical Wnt signaling in BMSCs. NPY was observed to regulate osteoblastic differentiation at concentrations ranging from 10(-8) to 10(-12)mol/L, and the effects of NPY on the levels of Wnt signaling proteins were detected using Western blotting. To unravel the underlying mechanism, BMSCs were treated with NPY after pretreatment with the NPY-1R antagonist PD160170 or the Wnt pathway antagonist DKK1, and gene expression levels of Wnt signaling molecules and osteoblastic markers were determined by qPCR. Our results indicated that NPY significantly promoted osteoblastic differentiation of BMSCs in a concentration-dependent manner and up-regulated the expression levels of proteins including ß-catenin and p-GSK-3ß and the mRNA level of ß-catenin. Moreover, NPY promoted the translocation of ß-catenin into nucleus. The effects of NPY were inhibited by PD160170 or DKK1. Additionally, NPY enhanced the ability of BMSCs to migrate and promoted the expression of vascular endothelial growth factor (VEGF) as measured by immunocytochemical staining, qPCR and Western blot. These results suggested that NPY may stimulate osteoblastic differentiation via activating canonical Wnt signaling and enhance the angiogenic capacity of BMSCs.


Subject(s)
Cell Differentiation , Mesenchymal Stem Cells/physiology , Neuropeptide Y/physiology , Osteoblasts/physiology , Vascular Endothelial Growth Factor A/metabolism , Animals , Bone Morphogenetic Protein 2/metabolism , Cell Differentiation/drug effects , Cell Movement/drug effects , Cells, Cultured , In Vitro Techniques , Male , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , Neuropeptide Y/administration & dosage , Osteoblasts/drug effects , Rats , Wnt Signaling Pathway/drug effects
6.
Stem Cells Int ; 2015: 270328, 2015.
Article in English | MEDLINE | ID: mdl-26106423

ABSTRACT

Substance P (SP) contributes to bone formation by stimulating the proliferation and differentiation of bone marrow stromal cells (BMSCs); however, the possible involved effect of SP on apoptosis induced by serum deprivation (SD) in BMSCs is unclear. To explore the potential protective effect of SP and its mechanism, we investigated the relationships among SP, apoptosis induced by SD, and Wnt signaling in BMSCs. SP exhibited a protective effect, as indicated by a reduction in the apoptotic rate, nuclear condensation, caspase-3 and caspase-9 activation, and the ratio of Bax/Bcl-2 that was observed after 24 h of SD. This protective effect was blocked by the inhibition of Wnt signaling or antagonism of the NK-1 receptor. Moreover, SP promoted the mRNA and protein expression of Wnt signaling molecules such as ß-catenin, p-GSK-3ß, c-myc, and cyclin D1 in addition to the nuclear translocation of ß-catenin, indicating that active Wnt signaling is involved in SP inhibition of apoptosis. Our results revealed that mediated by the NK-1 receptor, SP exerts an inhibitory effect on serum deprivation induced apoptosis in BMSCs that is related to the activation of canonical Wnt signaling.

SELECTION OF CITATIONS
SEARCH DETAIL
...