Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38930386

ABSTRACT

Hydrogen atoms can enter into metallic materials through penetration and diffusion, leading to the degradation of the mechanical properties of the materials, and the application of hydrogen barrier coatings is an effective means to alleviate this problem. Zirconia coatings (ZrO2) have been widely studied as a common hydrogen barrier coating, but zirconia undergoes a crystalline transition with temperature change, which can lead to volumetric changes in the coating and thus cause problems such as cracking and peeling of the coating. In this work, ZrO2 coating was prepared on a Q235 matrix using a sol-gel method, while yttria-stabilized zirconia (YSZ) coatings with different contents of rare earth elements were prepared in order to alleviate a series of problems caused by the crystal form transformation of ZrO2. The coating performances were evaluated by the electrochemical hydrogen penetration test, pencil hardness test, scratch test, and high-temperature oxidation test. The results show that yttrium can improve the stability of the high-temperature phase of ZrO2, alleviating the cracking problem of the coating due to the volume change triggered by the crystalline transition; improve the consistency of the coating; and refine the grain size of the oxide. The performance of YSZ coating was strongly influenced by the yttria doping mass, and the coating with 10 wt% yttria doping had the best hydrogen barrier performance, the best antioxidant performance, and the largest adhesion. Compared with the matrix, the steady-state hydrogen current density of the YSZ coating decreased by 72.3%, the antioxidant performance was improved by 65.8%, and the ZrO2 coating hardness and adhesion levels were B and 4B, respectively, while YSZ coating hardness and adhesion were upgraded to 2H and 5B. With the further increase in yttrium doping mass, the hardness of the coating continued to improve, but the defects of the coating increased, resulting in a decrease in the hydrogen barrier performance, antioxidant performance, and adhesion. In this work, the various performances of ZrO2 coating were significantly improved by doping with the rare earth element, which provides a reference for further development and application of oxide coatings.

2.
ACS Omega ; 9(16): 18526-18541, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38680318

ABSTRACT

Phosphogypsum produced from wet-processed phosphoric acid mainly consists of calcium sulfate dihydrate, which is an important sulfur resource. The traditional sulfuric acid and cement process based on phosphogypsum suffers from unstable cement quality owing to impurities such as phosphorus and fluorine and kiln ringing caused by the low-melting phase. This study investigated sulfur recovery and value-added utilization of liquid slag from high-silica phosphogypsum via carbothermal reduction smelting. A phosphogypsum ingredient (PGI) system was constructed by adding appropriate amounts of silica, alumina, magnesium oxides, and iron oxides to meet the production requirements of slag wool. Carbothermal reduction smelting experiments suggested that the temperature and C/S molar ratio significantly affected the desulfurization rate and phase structure of the slag. More than 97.44 wt % of sulfur could be recovered with a C/S molar ratio of 0.5-0.8 at 1300 °C or above in the molten state, and the molten slag was an amorphous magnesium-calcium-aluminosilicate. The PGI desulfurization mechanism is discussed based on the phase transformation and slag microstructure evolution.

3.
Int J Biol Macromol ; 242(Pt 3): 125093, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37257530

ABSTRACT

Capparis spinosa L. (CSL) is used in traditional medicinal purposes for wound dressing because it contains natural phenolic and flavonoid active compounds. In the current study, a bilayer of biocompatible and mechanically stable nanofiber scaffolds with polycaprolactone (PCL)/zinc oxide and Capparis spinosa L. ethyl acetate extract (CSLE)/polylactic acid (PLA) layers was successfully prepared by an electrostatic spinning technique. Microstructural observations carried out by scanning electron microscopy (SEM) have shown that the nanofibers with a smooth surface are continuous and bead-free, and that the size distribution is uniform, with an average diameter of 314.15 nm. The results of careful observation further suggested that polymers in the nanofibers have excellent compatibility with drugs. The results of Fourier transform infrared (FTIR) spectroscopy suggested that CSLE and zinc oxide nanoparticles (ZnO) were successfully loaded in the nanofiber membranes. Water contact angle measurements revealed that the bilayer nanofiber membranes exhibited satisfactory wettability (outside layer, 130°; inner layer, 72.4°). Tensile testing showed that the bilayer PCL/ZnO-CSLE/PLA nanofibers remained unbroken until reaching 10.69 MPa, which is much higher than the tensile strengths of the individual layers or the individual components. Moreover, agar disk diffusion assessment confirmed that the bilayer nanofiber membranes obviously hindered bacterial growth. Cytotoxicity studies showed that the bilayer nanofiber membranes effectively accelerated cell proliferation. The investigated PCL/ZnO-CSLE/PLA bilayer nanofibers have potential for use as membranes for wound dressing applications.


Subject(s)
Capparis , Nanofibers , Zinc Oxide , Zinc Oxide/chemistry , Tissue Scaffolds/chemistry , Nanofibers/chemistry , Polyesters/chemistry , Bandages , Anti-Bacterial Agents/chemistry
4.
Langmuir ; 39(7): 2729-2738, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36749602

ABSTRACT

A decrease in CO2 emissions is urgently required in the present situation due to the fast growth of carbon dioxide (CO2) in the atmosphere, which has caused a series of global climate issues. This study used an impregnation-evaporation method to immobilize an amino functionalized ionic liquid [C2OHmim][Lys] on a chromatographic column filler GDX-103 and create a novel supported ionic liquid. The results showed that the supported ionic liquid with 60 wt % ionic liquid content had the best adsorption performance at 40 °C, and the CO2 adsorption isotherm showed that the adsorption capacity at 0.1 MPa was 1.29 mmol CO2/g sorbent, which was 6 times greater than the adsorption capacity of the pure carrier. The sample with 60% ionic liquid content has an adsorption capacity of 1.02 mmol CO2/g sorbent under the condition of CO2/N2 mixed gas with 10% CO2 content. This is 43 times greater than the adsorption capacity of the pure carrier, and its adsorption performance is stable after three adsorption and desorption cycles. Through the rich porous structure of GDX-103, the ionic liquid is effectively supported and dispersed, which expands the contact area between CO2 and ionic liquid and enhances the mass transfer of CO2. At the same time, CO2 can be chemically bound to the groups on the anion of ionic liquid and be immobilized, so it has a high selective adsorption capacity of CO2, which makes it a great alternative to traditional CO2 adsorbents.

SELECTION OF CITATIONS
SEARCH DETAIL
...