Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 664
Filter
1.
Radiat Oncol ; 19(1): 72, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38851718

ABSTRACT

BACKGROUND: To integrate radiomics and dosiomics features from multiple regions in the radiation pneumonia (RP grade ≥ 2) prediction for esophageal cancer (EC) patients underwent radiotherapy (RT). METHODS: Total of 143 EC patients in the authors' hospital (training and internal validation: 70%:30%) and 32 EC patients from another hospital (external validation) underwent RT from 2015 to 2022 were retrospectively reviewed and analyzed. Patients were dichotomized as positive (RP+) or negative (RP-) according to CTCAE V5.0. Models with radiomics and dosiomics features extracted from single region of interest (ROI), multiple ROIs and combined models were constructed and evaluated. A nomogram integrating radiomics score (Rad_score), dosiomics score (Dos_score), clinical factors, dose-volume histogram (DVH) factors, and mean lung dose (MLD) was also constructed and validated. RESULTS: Models with Rad_score_Lung&Overlap and Dos_score_Lung&Overlap achieved a better area under curve (AUC) of 0.818 and 0.844 in the external validation in comparison with radiomics and dosiomics models with features extracted from single ROI. Combining four radiomics and dosiomics models using support vector machine (SVM) improved the AUC to 0.854 in the external validation. Nomogram integrating Rad_score, and Dos_score with clinical factors, DVH factors, and MLD further improved the RP prediction AUC to 0.937 and 0.912 in the internal and external validation, respectively. CONCLUSION: CT-based RP prediction model integrating radiomics and dosiomics features from multiple ROIs outperformed those with features from a single ROI with increased reliability for EC patients who underwent RT.


Subject(s)
Esophageal Neoplasms , Nomograms , Radiation Pneumonitis , Humans , Esophageal Neoplasms/radiotherapy , Radiation Pneumonitis/etiology , Female , Male , Retrospective Studies , Middle Aged , Aged , Radiotherapy Dosage , Prognosis , Aged, 80 and over , Tomography, X-Ray Computed , Radiomics
2.
Appl Environ Microbiol ; : e0000124, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771056

ABSTRACT

Global change factors are known to strongly affect soil microbial community function and composition. However, as of yet, the effects of warming and increased anthropogenic nitrogen deposition on soil microbial network complexity and stability are still unclear. Here, we examined the effects of experimental warming (3°C above ambient soil temperature) and nitrogen addition (5 g N m-2 year-1) on the complexity and stability of the soil microbial network in a subtropical primary forest. Compared to the control, warming increased |negative cohesion|:positive cohesion by 7% and decreased network vulnerability by 5%; nitrogen addition decreased |negative cohesion|:positive cohesion by 10% and increased network vulnerability by 11%. Warming and decreased soil moisture acted as strong filtering factors that led to higher bacterial network stability. Nitrogen addition reduced bacterial network stability by inhibiting soil respiration and increasing resource availability. Neither warming nor nitrogen addition changed fungal network complexity and stability. These findings suggest that the fungal community is more tolerant than the bacterial community to climate warming and nitrogen addition. The link between bacterial network stability and microbial community functional potential was significantly impacted by nitrogen addition and warming, while the response of soil microbial network stability to climate warming and nitrogen deposition may be independent of its complexity. Our findings demonstrate that changes in microbial network structure are crucial to ecosystem management and to predict the ecological consequences of global change in the future. IMPORTANCE: Soil microbes play a very important role in maintaining the function and health of forest ecosystems. Unfortunately, global change factors are profoundly affecting soil microbial structure and function. In this study, we found that climate warming promoted bacterial network stability and nitrogen deposition decreased bacterial network stability. Changes in bacterial network stability had strong effects on bacterial community functional potentials linked to metabolism, nitrogen cycling, and carbon cycling, which would change the biogeochemical cycle in primary forests.

3.
Chembiochem ; : e202400285, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38752893

ABSTRACT

ω-Transaminases (ω-TAs) are attractive biocatalysts asymmetrically catalyzing ketones to chiral amines. However, poor non-native catalytic activity and substrate promiscuity severely hamper its wide application in industrial production. Protein engineering efforts have generally focused on reshaping the substrate-binding pockets of ω-TAs. However, hotspots around the substrate tunnel as well as distant sites outside the pockets may also affect its activity. In this study, the ω-TA from Bacillus megaterium (BmeTA) was selected for engineering. The tunnel mutation Y164F synergy with distant mutation A245T which was acquired through a multiple sequence alignment showed improved soluble expression, a 3.7-fold higher specific activity and a 19.9-fold longer half-life at 45℃. Molecule Dynamics simulation explains the mechanism of improved catalytic activity, enhanced thermostability and improved soluble expression of BmeTAY164F/A245T(2M). Finally, the resting cells of 2M were used for biocatalytic processes. 450 mM of S-methoxyisopropylamine (S-MOIPA) was obtained with an ee value of 97.3% and a conversion rate of 90%, laying the foundation for its industrial production. Mutant 2M was also found to be more advantageous in catalyzing the transamination of various ketones. These results demonstrated that sites that are far away from the active center also play an important role in the redesign of ω-TAs.

4.
Food Res Int ; 183: 114184, 2024 May.
Article in English | MEDLINE | ID: mdl-38760126

ABSTRACT

The global market for plant-based meat alternatives (PBMAs) is expanding quickly. In this narrative review, analysis of the most recent scientific literature was achieved to understand the nutritional profile, health implications, and the challenges faced by PBMAs. On the positive side, most PBMAs are good sources of dietary fiber, contain phytochemicals, have comparable levels of iron, and are lower in calories, saturated fat, and cholesterol than meat. However, PBMAs frequently contain anti-nutrients, have less protein, iron, and vitamin B12, are lower in protein quality, and also have higher amounts of sodium. Substituting PBMAs for meats may cause iron, vitamin B12, and less likely protein deficiency for these vulnerable population such as women, older adults, and individuals with disorders. PBMAs fall into the category of ultra-processed foods, indicating a need to develop minimally processed, clean-label products. Replacing red meat with healthy plant-based foods is associated with lower risks of cardiovascular diseases, type 2 diabetes, and total mortality. There is a lack of robust, long-term evidence on the role of PBMAs consumption in health. As the nutrient contents of PBMAs can vary, consumers must read nutrition facts labels and ingredient lists to select a product that best fits their nutritional and health objectives.


Subject(s)
Diet, Vegetarian , Nutritive Value , Humans , Diet, Healthy , Meat/analysis , Meat Substitutes
5.
J Agric Food Chem ; 72(23): 12896-12914, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38810024

ABSTRACT

Angiotensin-converting enzyme 2 (ACE2) is a key enzyme in the renin-angiotensin system (RAS), also serving as an amino acid transporter and a receptor for certain coronaviruses. Its primary role is to protect the cardiovascular system via the ACE2/Ang (1-7)/MasR cascade. Given the critical roles of ACE2 in regulating numerous physiological functions, molecules that can upregulate or activate ACE2 show vast therapeutic value. There are only a few ACE2 activators that have been reported, a wide range of molecules, including food-derived compounds, have been reported as ACE2 up-regulators. Effective doses of bioactive peptides range from 10 to 50 mg/kg body weight (BW)/day when orally administered for 1 to 7 weeks. Protein hydrolysates require higher doses at 1000 mg/kg BW/day for 20 days. Phytochemicals and vitamins are effective at doses typically ranging from 10 to 200 mg/kg BW/day for 3 days to 6 months, while Traditional Chinese Medicine requires doses of 1.25 to 12.96 g/kg BW/day for 4 to 8 weeks. ACE2 activation is linked to its hinge-bending region, while upregulation involves various signaling pathways, transcription factors, and epigenetic modulators. Future studies are expected to explore novel roles of ACE2 activators or up-regulators in disease treatments and translate the discovery to bedside applications.


Subject(s)
Angiotensin-Converting Enzyme 2 , Up-Regulation , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Humans , Animals , Up-Regulation/drug effects , Renin-Angiotensin System/drug effects , Peptidyl-Dipeptidase A/metabolism , Peptidyl-Dipeptidase A/genetics , Phytochemicals/metabolism , Phytochemicals/chemistry , Phytochemicals/pharmacology
6.
Int J Biol Macromol ; 269(Pt 2): 132102, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729465

ABSTRACT

Optically pure 1,2,3,4-tetrahydroquinolines (THQs) represent a class of important motifs in many natural products and pharmaceutical agents. While recent advances on redox biocatalysis have demonstrated the great potential of amine oxidases, all the transformations focused on 2-substituted THQs. The corresponding biocatalytic method for the preparation of chiral 4-substituted THQs is still challenging due to the poor activity and stereoselectivity of the available enzyme. Herein, we developed a biocatalytic kinetic resolution approach for enantiodivergent synthesis of 4-phenyl- or alkyl-substituted THQs. Through structure-guided protein engineering of cyclohexylamine oxidase derived from Brevibacterium oxidans IH-35 A (CHAO), the variant of CHAO (Y215H/Y214S) displayed improved specific activity toward model substrate 4-phenyl substituted THQ (0.14 U/mg, 13-fold higher than wild-type CHAO) with superior (R)-stereoselectivity (E > 200). Molecular dynamics simulations show that CHAO Y215H/Y214S allows a suitable substrate positioning in the expanded binding pocket to be facilely accessed, enabling enhanced activity and stereoselectivity. Furthermore, a series of 4-alkyl-substituted THQs can be transformed by CHAO Y215H/Y214S, affording R-isomers with good yields (up to 50 %) and excellent enantioselectivity (up to ee > 99 %). Interestingly, the monoamine oxidase from Pseudomonas fluorescens Pf0-1 (PfMAO1) with opposite enantioselectivity was also mined. Together, this system enriches the kinetic resolution methods for the synthesis of chiral THQs.


Subject(s)
Quinolines , Kinetics , Stereoisomerism , Quinolines/chemistry , Biocatalysis , Brevibacterium/enzymology , Substrate Specificity , Molecular Dynamics Simulation , Monoamine Oxidase/metabolism , Monoamine Oxidase/chemistry
7.
Br J Nutr ; : 1-18, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818723

ABSTRACT

The potential threshold for dietary energy intake (DEI) that might prevent protein-energy wasting (PEW) in chronic kidney disease (CKD) is uncertain. The subjects were non-dialysis CKD patients aged ≥ 14 years who were hospitalized from September 2019 to July 2022. PEW was measured by subjective global assessment (SGA). DEI and dietary protein intake (DPI) were obtained by 3-days diet recalls. Patients were divided into adequate DEI group and inadequate DEI group according to DEI ≥ 30 or < 30 kcal/kg/d. Logistic regression analysis and restricted cubic spline (RCS) were used in this study. We enrolled 409 patients, with 53.8% had hypertension and 18.6% had diabetes. The DEI and DPI was 27.63 ± 5.79 kcal/kg/day and 1.00 (0.90,1.20) g/kg/day, respectively. 69.2% of participants in inadequate DEI group. Malnutrition occurred in 18.6% of patients. Comparing to patients in adequate DEI group, those in inadequate DEI group had significantly lower total lymphocyte count (TLC), serum cholesterol (Chol) and low-density cholesterol (LDL), and a higher prevalence of PEW. For every 1kcal/kg/day increase in DEI, the incidence of PEW was reduced by 12.0% [odds ratio (OR): 0.880, 95% confidence interval (CI): 0.830 to 0.933, P < 0.001]. There was a nonlinear curve relationship between DEI and PEW (overall P < 0.001), and DEI ≥ 27.6 kcal/kg/d may have a preventive effect on PEW in CKD. Low DPI was also significantly associated with malnutrition, but not when DEI was adequate. Decreased energy intake may be a more important factor of PEW in CKD than protein intake.

8.
Nat Struct Mol Biol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658622

ABSTRACT

The PIWI-interacting RNA (piRNA) pathway is an adaptive defense system wherein piRNAs guide PIWI family Argonaute proteins to recognize and silence ever-evolving selfish genetic elements and ensure genome integrity. Driven by this intensive host-pathogen arms race, the piRNA pathway and its targeted transposons have coevolved rapidly in a species-specific manner, but how the piRNA pathway adapts specifically to target silencing in mammals remains elusive. Here, we show that mouse MILI and human HILI piRNA-induced silencing complexes (piRISCs) bind and cleave targets more efficiently than their invertebrate counterparts from the sponge Ephydatia fluviatilis. The inherent functional differences comport with structural features identified by cryo-EM studies of piRISCs. In the absence of target, MILI and HILI piRISCs adopt a wider nucleic-acid-binding channel and display an extended prearranged piRNA seed as compared with EfPiwi piRISC, consistent with their ability to capture targets more efficiently than EfPiwi piRISC. In the presence of target, the seed gate-which enforces seed-target fidelity in microRNA RISC-adopts a relaxed state in mammalian piRISC, revealing how MILI and HILI tolerate seed-target mismatches to broaden the target spectrum. A vertebrate-specific lysine distorts the piRNA seed, shifting the trajectory of the piRNA-target duplex out of the central cleft and toward the PAZ lobe. Functional analyses reveal that this lysine promotes target binding and cleavage. Our study therefore provides a molecular basis for the piRNA targeting mechanism in mice and humans, and suggests that mammalian piRNA machinery can achieve broad target silencing using a limited supply of piRNA species.

9.
Int J Biol Macromol ; 267(Pt 2): 131415, 2024 May.
Article in English | MEDLINE | ID: mdl-38582485

ABSTRACT

The complete enzyme catalytic cycle includes substrate binding, chemical reaction and product release, in which different dynamic conformations are adopted. Due to the complex relationship among enzyme activity, stability and dynamics, the directed evolution of enzymes for improved activity or stability commonly leads to a trade-off in stability or activity. It hence remains a challenge to engineer an enzyme to have both enhanced activity and stability. Here, we have attempted to reconstruct the dynamics correlation network involved with active center to improve both activity and stability of a 2,3-butanediol dehydrogenase (2,3-BDH) by introducing inter-chain disulfide bonds. A computational strategy was first applied to evaluate the effect of introducing inter-chain disulfide bond on activity and stability of three 2,3-BDHs, and the N258C mutation of 2,3-BDH from Corynebacterium glutamicum (CgBDH) was proved to be effective in improving both activity and stability. In the results, CgBDH-N258C showed a different unfolding curve from the wild type, with two melting temperatures (Tm) of 68.3 °C and 50.8 °C, 19.7 °C and 2 °C higher than 48.6 °C of the wild type. Its half-life was also improved by 14.8-fold compared to the wild type. Catalytic efficiency (kcat/Km) of the mutant was increased by 7.9-fold toward native substrate diacetyl and 8.8-fold toward non-native substrate 2,5-hexanedione compared to the wild type. Molecular dynamics simulations revealed that an interaction network formed by Cys258, Arg162, Ala144 and the catalytic residues was reconstructed in the mutant and the dynamics change caused by the disulfide bond could be propagated through the interactions network. This improved the enzyme stability and activity by decreasing the flexibility and locking more "reactive" pose, respectively. Further construction of mutations including A144G showing a 44-fold improvement in catalytic efficiency toward meso-2,3-BD confirmed the role of modifying dynamics correlation network in tunning enzyme activity and selectivity. This study provided important insights into the relationship among dynamics, enzyme catalysis and stability, and will be useful in the designing new enzymes with co-evolution of stability, activity and selectivity.


Subject(s)
Alcohol Oxidoreductases , Corynebacterium glutamicum , Disulfides , Enzyme Stability , Molecular Dynamics Simulation , Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/genetics , Alcohol Oxidoreductases/metabolism , Disulfides/chemistry , Corynebacterium glutamicum/enzymology , Corynebacterium glutamicum/genetics , Mutation , Catalytic Domain , Kinetics , Protein Conformation , Protein Engineering/methods
10.
Acta Trop ; 255: 107234, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38688444

ABSTRACT

Aedes albopictus (Diptera: Culicidae) plays a crucial role as a vector for mosquito-borne diseases like dengue and zika. Given the limited availability of effective vaccines, the prevention of Aedes-borne diseases mainly relies on extensive efforts in vector surveillance and control. In multiple mosquito control methods, the identification and elimination of potential breeding sites (PBS) for Aedes are recognized as effective methods for population control. Previous studies utilizing unmanned aerial vehicles (UAVs) and deep learning to identify PBS have primarily focused on large, regularly-shaped containers. However, there has been a small amount of empirical research into their practical application in the field. We have thus constructed a PBS dataset specifically tailored for Ae. albopictus, including items such as buckets, bowls, bins, aquatic plants, jars, lids, pots, boxes, and sinks that were common in the Yangtze River Basin in China. Then, a YOLO v7 model for identifying these PBS was developed. Finally, we recognized and labeled the area with the highest PBS density, as well as the subarea with the most urgent need for source reduction in the empirical region, by calculating the kernel density value. Based on the above research, we proposed a UAV-AI-based methodological framework to locate the spatial distribution of PBS, and conducted empirical research on Jinhulu New Village, a typical model community. The results revealed that the YOLO v7 model achieved an excellent result on the F1 score and mAP(both above 0.99), with 97% of PBS correctly located. The predicted distribution of different PBS categories in each subarea was completely consistent with true distribution; the five houses with the most PBS were correctly located. The results of the kernel density map indicate the subarea 4 with the highest density of PBS, where PBS needs to be removed or destroyed with immediate effect. These results demonstrate the reliability of the prediction results and the feasibility of the UAV-AI-based methodological framework. It can minimize repetitive labor, enhance efficiency, and provide guidance for the removal and destruction of PBS. The research can shed light on the investigation of mosquito PBS investigation both methodologically and practically.


Subject(s)
Aedes , Deep Learning , Mosquito Control , Mosquito Vectors , Animals , Aedes/physiology , Aedes/growth & development , Mosquito Vectors/physiology , China , Mosquito Control/methods , Remote Sensing Technology
11.
J Agric Food Chem ; 72(15): 8606-8617, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38581395

ABSTRACT

Peptide IRW is the first food-derived angiotensin-converting enzyme 2 (ACE2) upregulator. This study aimed to investigate the pharmacokinetic characteristics of IRW and identify the metabolites contributing to its antihypertensive activity in spontaneously hypertensive rats (SHRs). Rats were administered 100 mg of IRW/kg of the body weight via an intragastric or intravenous route. The bioavailability (F %) was determined to be 11.7%, and the half-lives were 7.9 ± 0.5 and 28.5 ± 6.8 min for gavage and injection, respectively. Interestingly, significant blood pressure reduction was not observed until 1.5 h post oral administration, or 2 h post injection, indicating that the peptide's metabolites are likely responsible for the blood pressure-lowering activity. Time-course metabolomics revealed a significant increase in the level of kynurenine, a tryptophan metabolite, in blood after IRW administration. Kynurenine increased the level of ACE2 in cells. Oral administration of tryptophan (W), but not dipeptide IR, lowered the blood pressure and upregulated aortic ACE2 in SHRs. Our study supports the key role of tryptophan and its metabolite, kynurenine, in IRW's blood pressure-lowering effects.


Subject(s)
Angiotensin-Converting Enzyme 2 , Hypertension , Rats , Animals , Rats, Inbred SHR , Angiotensin-Converting Enzyme 2/metabolism , Biological Availability , Kynurenine/metabolism , Kynurenine/pharmacology , Tryptophan/metabolism , Peptides/metabolism , Antihypertensive Agents/pharmacology , Blood Pressure , Hypertension/metabolism , Peptidyl-Dipeptidase A/metabolism
12.
Nat Chem ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632367

ABSTRACT

Despite their intriguing photophysical and photochemical activities, naturally occurring photoenzymes have not yet been repurposed for new-to-nature activities. Here we engineered fatty acid photodecarboxylases to catalyse unnatural photoredox radical C-C bond formation by leveraging the strongly oxidizing excited-state flavoquinone cofactor. Through genome mining, rational engineering and directed evolution, we developed a panel of radical photocyclases to facilitate decarboxylative radical cyclization with excellent chemo-, enantio- and diastereoselectivities. Our high-throughput experimental workflow allowed for the directed evolution of fatty acid photodecarboxylases. An orthogonal set of radical photocyclases was engineered to access all four possible stereoisomers of the stereochemical dyad, affording fully diastereo- and enantiodivergent biotransformations in asymmetric radical biocatalysis. Molecular dynamics simulations show that our evolved radical photocyclases allow near-attack conformations to be easily accessed, enabling chemoselective radical cyclization. The development of stereoselective radical photocyclases provides unnatural C-C-bond-forming activities in natural photoenzyme families, which can be used to tame the stereochemistry of free-radical-mediated reactions.

13.
Food Chem X ; 22: 101352, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38601950

ABSTRACT

α-Amylase, essential for carbohydrate digestion, relies on calcium (Ca) for its structural integrity and enzymatic activity. This study explored the inhibitory effect of salmon bone peptides on α-amylase activity through their interaction with the enzyme's Ca-binding sites. Among the various salmon bone hydrolysates, salmon bone trypsin hydrolysate (SBTH) exhibited the highest α-amylase inhibition. The peptide IEELEEELEAER (PIE), with a sequence of Ile-Glu-Glu-Leu-Glu-Glu-Glu-Glu-Leu-Glu-Ala-Glu-Arg from SBTH, was found to specifically target the Ca-binding sites in α-amylase, interacting with key residues such as Asp206, Trp203, His201, etc. Additionally, cellular experiments using 3 T3-L1 preadipocytes indicated PIE's capability to suppress adipocyte differentiation, and decreases in intracellular triglycerides, total cholesterol, and lipid accumulation. In vivo studies also showed a significant reduction in weight gain in the group treated with PIE(6.61%)compared with the control group (33.65%). These findings suggest PIE is an effective α-amylase inhibitor, showing promise for obesity treatment.

14.
Bioresour Bioprocess ; 11(1): 26, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38647789

ABSTRACT

The use of enzymes to catalyze Henry reaction has advantages of mild reaction conditions and low contamination, but low enzyme activity of promiscuous catalysis limits its application. Here, rational design was first performed to identify the key amino acid residues in Henry reaction catalyzed by Lactococcal multidrug resistance Regulator (LmrR). Further, non-canonical amino acids were introduced into LmrR, successfully obtaining variants that enhanced the catalytic activity of LmrR. The best variant, V15CNF, showed a 184% increase in enzyme activity compared to the wild type, and was 1.92 times more effective than the optimal natural amino acid variant, V15F. Additionally, this variant had a broad substrate spectrum, capable of catalyzing reactions between various aromatic aldehydes and nitromethane, with product yielded ranging from 55 to 99%. This study improved enzymatic catalytic activity by enhancing affinity between the enzyme and substrates, while breaking limited types of natural amino acid residues by introducing non-canonical amino acids into the enzyme, providing strategies for molecular modifications.

15.
J Agric Food Chem ; 72(13): 7219-7229, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38507577

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) K88 is the most common cause of diarrhea in neonatal and postweaning pigs. After adhering to small intestinal epithelial cells via glycoprotein receptor recognition, the pathogen can produce enterotoxins, impair intestinal integrity, trigger watery diarrhea, and induce inflammation via nuclear factor κB (NF-κB) and mitogen-activated protein kinase phosphatase (MAPK) pathways. Inhibiting ETEC K88 adhesion to cell surfaces by interfering with the receptor-fimbriae recognition provides a promising strategy to prevent the initiation and progression of infection. Ovomucin is a highly glycosylated protein in chicken egg white with diverse bioactivities. Ovomucin hydrolysates prepared by the enzymes Protex 26L (OP) and pepsin/pancreatin (OPP) were previously revealed to prevent adhesion of ETEC K88 to IPEC-J2 cells. Herein, we investigated the protective effects of ovomucin hydrolysates on ETEC K88-induced barrier integrity damage and inflammation in IPEC-J2 and Caco-2 cells. Both hydrolysates inhibited ETEC K88 adhesion to cells and protected epithelial cell integrity by restoring transepithelial electronic resistance (TEER) values. Removing sialic acids in the hydrolysates reduced their antiadhesive capacities. Ovomucin hydrolysates suppressed ETEC-induced activation of NF-κB and MAPK signaling pathways in both cell lines. The ability of ETEC K88 in activating calcium/calmodulin-dependent protein kinase 2 (CaMK II), elevating intracellular Ca2+ concentration, and inducing oxidative stress was attenuated by both hydrolysates. In conclusion, this study demonstrated the potential of ovomucin hydrolysates to prevent ETEC K88 adhesion and alleviate inflammation and oxidative stress in intestinal epithelial cells.


Subject(s)
Enterotoxigenic Escherichia coli , Escherichia coli Infections , Humans , Animals , Swine , Ovomucin , Bacterial Adhesion , Caco-2 Cells , NF-kappa B/genetics , NF-kappa B/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/microbiology , Diarrhea/microbiology , Epithelial Cells/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Intestinal Mucosa/metabolism
16.
Cardiovasc Res ; 120(7): 796-810, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38498586

ABSTRACT

AIMS: Long non-coding RNA (LncRNA) small nucleolar RNA host gene 18 (SNHG18) has been widely implicated in cancers. However, little is known about its functional involvement in vascular diseases. Herein, we attempted to explore a role for SNHG18 in modulating vascular smooth muscle cell (VSMC) contractile phenotype and injury-induced neointima formation. METHODS AND RESULTS: Analysis of single-cell RNA sequencing and transcriptomic datasets showed decreased levels of SNHG18 in injured and atherosclerotic murine and human arteries, which is positively associated with VSMC contractile genes. SNHG18 was upregulated in VSMCs by TGFß1 through transcription factors Sp1 and SMAD3. SNHG18 gene gain/loss-of-function studies revealed that VSMC contractile phenotype was positively regulated by SNHG18. Mechanistic studies showed that SNHG18 promotes a contractile VSMC phenotype by up-regulating miR-22-3p. SNHG18 up-regulates miR-22 biogenesis and miR-22-3p production by competitive binding with the A-to-I RNA editing enzyme, adenosine deaminase acting on RNA-2 (ADAR2). Surprisingly, we observed that ADAR2 inhibited miR-22 biogenesis not through increasing A-to-I editing within primary miR-22, but by interfering with the binding of microprocessor complex subunit DGCR8 to primary miR-22. Importantly, perivascular SNHG18 overexpression in the injured vessels dramatically up-regulated the expression levels of miR-22-3p and VSMC contractile genes, and prevented injury-induced neointimal hyperplasia. Such modulatory effects were reverted by miR-22-3p inhibition in the injured arteries. Finally, we observed a similar regulator role for SNHG18 in human VSMCs and a decreased expression level of both SNHG18 and miR-22-3p in diseased human arteries; and we found that the expression level of SNHG18 was positively associated with that of miR-22-3p in both healthy and diseased human arteries. CONCLUSION: We demonstrate that SNHG18 is a novel regulator in governing VSMC contractile phenotype and preventing injury-induced neointimal hyperplasia. Our findings have important implications for therapeutic targeting snhg18/miR-22-3p signalling in vascular diseases.


Subject(s)
Carotid Artery Injuries , Disease Models, Animal , Hyperplasia , Mice, Inbred C57BL , MicroRNAs , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Neointima , Phenotype , RNA, Long Noncoding , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , MicroRNAs/metabolism , MicroRNAs/genetics , Animals , Carotid Artery Injuries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Cells, Cultured , Male , Signal Transduction , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Gene Expression Regulation , Mice , Mice, Knockout, ApoE
17.
ACS Nano ; 18(12): 9137-9149, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38470845

ABSTRACT

Point-of-care monitoring of small molecules in biofluids is crucial for clinical diagnosis and treatment. However, the inherent low degree of recognition of small molecules and the complex composition of biofluids present significant obstacles for current detection technologies. Although nanopore sensing excels in the analysis of small molecules, the direct detection of small molecules in complex biofluids remains a challenge. In this study, we present a method for sensing the small molecule drug gentamicin in whole blood based on the mechanosensitive channel of small conductance in Pseudomonas aeruginosa (PaMscS) nanopore. PaMscS can directly detect gentamicin and distinguish its main components with only a monomethyl difference. The 'molecular sieve' structure of PaMscS enables the direct measurement of gentamicin in human whole blood within 10 min. Furthermore, a continuous monitoring device constructed based on PaMscS achieved continuous monitoring of gentamicin in live rats for approximately 2.5 h without blood consumption, while the drug components can be analyzed in situ. This approach enables rapid and convenient drug monitoring with single-molecule level resolution, which can significantly lower the threshold for drug concentration monitoring and promote more efficient drug use. Moreover, this work also lays the foundation for the future development of continuous monitoring technology with single-molecule level resolution in the living body.


Subject(s)
Anti-Bacterial Agents , Nanopores , Humans , Rats , Animals , Anti-Bacterial Agents/pharmacology , Gentamicins , Nanotechnology , Pseudomonas aeruginosa
18.
Front Pediatr ; 12: 1332989, 2024.
Article in English | MEDLINE | ID: mdl-38523842

ABSTRACT

Introduction: To investigate the epidemiological features and prevalence of cruciate ligament injuries (CLI) in children and adolescents, and to examine the potential risk factors associated with concomitant meniscal tear (MT) among this population. Methods: The demographic data and injury details of children and adolescents with CLI from Southeast China were analyzed to describe their distribution characteristics, alongside an analysis of the prevalence of MTs, the most frequent complication. In addition, binary logistic analysis was employed to ascertain the risk factors linked to MT in individuals suffering from CLI. Results: A total of 203 patients with CLI (n = 206) met the inclusion criteria, with a male-to-female ratio of 2.3:1. Notably, a higher proportion of females were aged ≤16 years old compared to males, who predominated in patients aged >16 years (P = 0.001). Among children and adolescents, anterior cruciate ligament (ACL) injuries were the primary type of CLI, accounting for 88.18% (179/203) of all cases. The majority of cases (132/203, 65.02%) were sustained during sports activities, and sprains were the predominant mechanism of injury (176/203, 86.7%). Additionally, the most common associated injury was an MT (157/203, 77.34%). The posterior horn is the most frequently affected site for both medial MT (62.93% out of 73 cases) and lateral MT (70.19% out of 73 cases). Moreover, vertical tears constituted the majority of medial MTs (59.48% out of 116 cases). Furthermore, patients with a higher BMI faced an increased risk of associated MT in comparison to non-overweight patients (88% vs. 73.86%; P = 0.038). Each increase in BMI unit was linked with a 14% higher probability of associated MT occurrence in children and adolescents with CLI (OR = 1.140; P = 0.036). Discussion: ACL injuries are a common form of knee ligament injury among children and adolescents, especially those over the age of 16, and are often the result of a sprain. Meniscal posterior horn injury is the most commonly associated injury of youth with CLI. Additionally, overweight or obese people with CLI are at a greater risk of developing MT.

19.
Int J Med Sci ; 21(4): 674-680, 2024.
Article in English | MEDLINE | ID: mdl-38464822

ABSTRACT

Background: IgA nephropathy (IgAN) is a cause of chronic kidney disease (CKD). Tubular atrophy/interstitial fibrosis is associated with IgAN prognosis. However, simple tools for predicting pathological lesions of IgAN remain limited. Our objective was to develop a tool for evaluating tubular atrophy/interstitial fibrosis in patients with IgAN. Methods: In this cross-sectional study, 410 biopsy-verified IgAN patients were included. The factors associated with the incident interstitial fibrosis or tubular atrophy in IgAN were confirmed by using logistic regression analysis. A nomogram was developed using logistic regression coefficients to evaluate tubular atrophy or interstitial fibrosis. Receiver operating characteristic curves (ROC) and calibration curves were used to determine the discriminative ability and predictive accuracy of the nomogram. Results: In this study, the IgAN patients with tubular atrophy or interstitial fibrosis were older and had a higher percentage of males, hypertension and urinary protein excretion (UPE), with high levels of serum cystatin C, serum creatinine, high-sensitivity C-reactive protein and serum C4. The eGFRcr-cys equation calculated using serum creatinine, cystatin C and UPE were considered independent influencing factors of tubular atrophy or interstitial fibrosis in patients with IgAN. Furthermore, the nomogram demonstrated good discrimination (AUC: 0.87, 95% CI 0.81 to 0.93) and calibration in the validation cohort. Conclusion: The eGFRcr-cys and UPE are associated with tubular atrophy or interstitial fibrosis in patients with IgAN. Diagnostic nomogram can predict tubular atrophy or interstitial fibrosis in IgAN.


Subject(s)
Glomerulonephritis, IGA , Male , Humans , Glomerulonephritis, IGA/diagnosis , Glomerulonephritis, IGA/complications , Cystatin C , Nomograms , Creatinine , Cross-Sectional Studies , Fibrosis , Atrophy/complications , Retrospective Studies , Kidney/pathology
20.
Food Res Int ; 181: 114111, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38448110

ABSTRACT

Alternative plant protein sources offer excellent solutions for tackling the current challenge of food insecurity and sustainability. Inspired by soy tofu, pressed gels represent a robust and versatile way to create protein-enriched plant products. Here, production of heat-induced pressed gels from canola cold-pressed cakes (CPC) and hot-pressed cakes (HPC) was investigated under varied stirring conditions. Pressed gels prepared from CPC resulted in a greater yield and protein recovery than that of HPC. While using carbohydrases as a pretreatment was ineffective in improving yield and protein recovery, applying a stirring condition during heating increased the protein recovery up to 38.3%. Also, stirring condition was proved to be able to modulate the textural properties by controlling the compactness and the size of aggregates. It is revealed that pressed gels are stabilized through a combination of hydrogen bonds, hydrophobic interactions, and disulfide bonds. In comparison to canola press cake, the pressed gels contained less glucosinolates and phenolic compounds, but more phytic acid. A mechanism of formation has been hypothesized based on the nucleation-growth mechanism, and a shift was proposed from diffusion-limited processes in non-stirred pressed gels to reaction-limited process in stirred pressed gels. In conclusion, the potential of canola heat-induced pressed gels was demonstrated both as a stand-alone product and a micro-structured protein extract.


Subject(s)
Brassica napus , Hot Temperature , Glycoside Hydrolases , Gels
SELECTION OF CITATIONS
SEARCH DETAIL
...