Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 132
Filter
1.
World J Microbiol Biotechnol ; 40(9): 268, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007987

ABSTRACT

Bacillus subtilis is a widespread Gram-positive facultative aerobic bacterium that is recognized as generally safe. It has shown significant application value and great development potential in the animal farming industry. As a probiotic, it is frequently used as a feed growth supplement to effectively replace antibiotics due to its favourable effects on regulating the intestinal flora, improving intestinal immunity, inhibiting harmful microorganisms, and secreting bioactive substances. Consequently, the gut health and disease resistance of farmed animals can be improved. Both vegetative and spore forms of B. subtilis have also been utilized as vaccine carriers for delivering the antigens of infectious pathogens for over a decade. Notably, its spore form is regarded as one of the most prospective for displaying heterologous antigens with high activity and stability. Previously published reviews have predominantly focused on the development and applications of B. subtilis spore surface display techniques. However, this review aims to summarize recent studies highlighting the important role of B. subtilis as a probiotic and vaccine carrier in maintaining animal health. Specifically, we focus on the beneficial effects and underlying mechanisms of B. subtilis in enhancing disease resistance among farmed animals as well as its potential application as mucosal vaccine carriers. It is anticipated that B. subtilis will assume an even more prominent role in promoting animal health with in-depth research on its characteristics and genetic manipulation tools.


Subject(s)
Bacillus subtilis , Probiotics , Probiotics/administration & dosage , Bacillus subtilis/genetics , Animals , Spores, Bacterial/immunology , Gastrointestinal Microbiome , Disease Resistance , Vaccines/immunology
2.
Front Pharmacol ; 15: 1382441, 2024.
Article in English | MEDLINE | ID: mdl-38783951

ABSTRACT

Background: The development and marketing of Bedaquiline (BDQ) represent significant advancements in treating tuberculosis, particularly multidrug-resistant forms. However, comprehensive research into BDQ's real-world safety remains limited. Purpose: We obtained BDQ related adverse event (AE) information from the US Food and Drug Administration's Adverse Event Reporting System (FAERS) to assess its safety and inform drug usage. Methods: The AE data for BDQ from 2012 Q4 to 2023 Q3 was collected and standardized. Disproportionality analysis, including Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Multi-item Gamma Poisson Shrinker (MGPS), and Bayesian Confidence Propagation Neural Network (BCPNN) was used to quantify signals of BDQ-related AEs. Logistic regression was used to analyze the individual data of hepatotoxicity and drug-induced liver injury, and multiple linear regression models were established. Additionally, network pharmacology was employed to identify the potential biological mechanisms of BDQ-induced liver injury. Results: We identified 2017 case reports directly related to BDQ. Our analysis identified 341 Preferred Terms (PTs) characterizing these AEs across 27 System Organ Classes (SOC). An important discovery was the identification of AEs associated with ear and labyrinth disorders, which had not been documented in the drug's official leaflet before. Subgroup analysis revealed a negative correlation between BDQ-related liver injury and females (OR: 0.4, 95%CI: 0.3-0.6). In addition, via network pharmacology approach, a total of 76 potential targets for BDQ related liver injury were predicted, and 11 core target genes were selected based on the characterization of protein-protein interactions. The pathway linked to BDQ-induced liver injury was identified, and it was determined that the PI3K-Akt signaling pathway contained the highest number of associated genes. Conclusion: The analysis of the FAERS database revealed adverse events linked to BDQ, prompting the use of a network pharmacology approach to study the potential molecular mechanism of BDQ-induced liver injury. These findings emphasized the significance of drug safety and offered understanding into the mechanisms behind BDQ-induced liver injury. BDQ demonstrated distinct advantages, including reduced incidence of certain adverse events compared to traditional treatments such as injectable agents and second-line drugs. However, it is important to acknowledge the limitations of this analysis, including potential underreporting and confounding factors. This study provides valuable insights into the safety of BDQ and its role in the management of MDR-TB, emphasizing the need for continued surveillance and monitoring to ensure its safe and effective use.

3.
Bioorg Chem ; 147: 107421, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38714118

ABSTRACT

Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.


Subject(s)
Antineoplastic Agents , Apoptosis , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Homeostasis , Hydroxamic Acids , Iron , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Iron/metabolism , Iron/chemistry , Cell Proliferation/drug effects , Homeostasis/drug effects , Structure-Activity Relationship , Hydroxamic Acids/pharmacology , Hydroxamic Acids/chemistry , Hydroxamic Acids/chemical synthesis , Molecular Structure , Apoptosis/drug effects , Anions/chemistry , Anions/pharmacology , Dose-Response Relationship, Drug , Animals , Cell Line, Tumor , Mice , Quinine/analogs & derivatives
4.
Front Immunol ; 15: 1358960, 2024.
Article in English | MEDLINE | ID: mdl-38655256

ABSTRACT

Introduction: Early detection of the virus in the environment or in infected pigs is a critical step to stop African swine fever virus (ASFV) transmission. The p22 protein encoded by ASFV KP177R gene has been shown to have no effect on viral replication and virulence and can serve as a molecular marker for distinguishing field virus strains from future candidate KP177R deletion vaccine strains. Methods: This study established an ASFV detection assay specific for the highly conserved ASFV KP177R gene based on recombinase polymerase amplification (RPA) and the CRISPR/Cas12 reaction system. The KP177R gene served as the initial template for the RPA reaction to generate amplicons, which were recognized by guide RNA to activate the trans-cleavage activity of Cas12a protein, thereby leading to non-specific cleavage of single-stranded DNA as well as corresponding color reaction. The viral detection in this assay could be determined by visualizing the results of fluorescence or lateral flow dipstick (LFD) biotin blotting for color development, and was respectively referred to as fluorescein-labeled RPA-CRISPR/Cas12a and biotin-labeled LFD RPA-CRISPR/Cas12a. The clinical samples were simultaneously subjected to the aforementioned assay, while real-time quantitative PCR (RT-qPCR) was employed as a control for determining the diagnostic concordance rate between both assays. Results: The results showed that fluorescein- and biotin-labeled LFD KP177R RPA-CRISPR/Cas12a assays specifically detected ASFV, did not cross-react with other swine pathogens including PCV2, PEDV, PDCoV, and PRV. The detection assay established in this study had a limit of detection (LOD) of 6.8 copies/µL, and both assays were completed in 30 min. The KP177R RPA-CRISPR/Cas12a assay demonstrated a diagnostic coincidence rate of 100% and a kappa value of 1.000 (p < 0.001), with six out of ten clinical samples testing positive for ASFV using both KP177R RPA-CRISPR/Cas12a and RT-qPCR, while four samples tested negative in both assays. Discussion: The rapid, sensitive and visual detection assay for ASFV developed in this study is suitable for field application in swine farms, particularly for future differentiation of field virus strains from candidate KP177R gene-deleted ASFV vaccines, which may be a valuable screening tool for ASF eradication.


Subject(s)
African Swine Fever Virus , African Swine Fever , Bacterial Proteins , CRISPR-Cas Systems , African Swine Fever Virus/genetics , Animals , Swine , African Swine Fever/virology , African Swine Fever/diagnosis , CRISPR-Associated Proteins/genetics , Recombinases/genetics , Recombinases/metabolism , Viral Proteins/genetics , Nucleic Acid Amplification Techniques/methods , Endodeoxyribonucleases/genetics , Sensitivity and Specificity
5.
Ageing Res Rev ; 96: 102234, 2024 04.
Article in English | MEDLINE | ID: mdl-38367813

ABSTRACT

Osteoporosis is a prevalent chronic metabolic bone disease that poses a significant risk of fractures or mortality in elderly individuals. Its pathophysiological basis is often attributed to postmenopausal estrogen deficiency and natural aging, making the progression of primary osteoporosis among elderly people, especially older women, seemingly inevitable. The treatment and prevention of osteoporosis progression have been extensively discussed. Recently, as researchers delve deeper into the molecular biological mechanisms of bone remodeling, they have come to realize the crucial role of posttranscriptional gene control in bone metabolism homeostasis. RNA-binding proteins, as essential actors in posttranscriptional activities, may exert influence on osteoporosis progression by regulating the RNA life cycle. This review compiles recent findings on the involvement of RNA-binding proteins in abnormal bone metabolism in osteoporosis and describes the impact of some key RNA-binding proteins on bone metabolism regulation. Additionally, we explore the potential and rationale for modulating RNA-binding proteins as a means of treating osteoporosis, with an overview of drugs that target these proteins.


Subject(s)
Osteoporosis , Female , Humans , Aged , Osteoporosis/drug therapy , Aging , Bone and Bones , Homeostasis
6.
Org Biomol Chem ; 22(1): 90-94, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-38047717

ABSTRACT

Indole-3-carbinol, bisindolylmethanes (BIMs) and indole-3-methanamines exhibit diverse therapeutic activities. Fluorinated molecules are widely used in pharmaceuticals. Herein we report a facile and straightforward method for the successful synthesis of difluoromethylated indole-3-carbinols, bisindolylmethanes and indole-3-methanamines by a Friedel-Crafts reaction. The reaction involves the in situ generation of difluoroacetaldehyde from difluoroacetaldehyde ethyl hemiacetal in the presence of a base or an acid. This protocol is distinguished by its good to excellent yields, broad substrate compatibility, good functional group tolerance and scalability.

7.
Curr Issues Mol Biol ; 45(12): 10211-10224, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38132483

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) belongs to the coronavirus family and the coronavirus genus, causing contact enteric infection in pigs. It is one of the most serious diseases that threatens the pig industry. However, there is currently no specific drug to prevent and treat the disease, indicating that we need to be vigilant about the spread of the disease and the development of anti-PEDV drugs. The dried aerial parts of the plant Portulaca oleracea in the family Portulacaceous, whose decoction can be used to treat acute enteritis, dysentery, diarrhea, and other diseases. This study explored the potential mechanism of water extract of Portulaca oleracea (WEPO) in PEDV-induced pyroptosis in Vero cells. PEDV decreased the viability of Vero cells in a dose- and time-dependent manner, causing cell damage, upregulating the level of intracellular Nlrp3, and inhibiting the level of Gasdermin D (GSDMD) and the activation of Caspase-1. WEPO can inhibit PEDV-induced pyroptosis, reduce the elevation of inflammatory factors caused by infection, and exhibit a dose-dependent effect. Knockdown of Caspase-1 and GSDMD separately can induce the production of the inflammatory factor IL-1ß to significantly decrease and increase, respectively. These results suggest that WEPO can inhibit cell pyroptosis caused by PEDV and that the Caspase-1 and GSDMD pathways play an important role in this process.

8.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(10): 1214-1219, 2023 Oct 15.
Article in Chinese | MEDLINE | ID: mdl-37848315

ABSTRACT

Objective: To explore the feasibility and early effectiveness of computer-simulated osteotomy based on the health-side combined with guide plate technique in the treatment of cubitus varus deformity in adolescents. Methods: The clinical data of 23 patients with cubitus varus deformity who met the selection criteria between June 2019 and February 2023 were retrospectively analyzed. There were 17 males and 6 females, ranging in age from 4 to 16 years with an average of 8.5 years. The time from injury to operation was 1-4 years. The angle of distal humerus rotation was defined by humeral head posterior inclination angle using low radiation dose CT to scan the patient's upper extremity data at one time, and the preoperative rotation of the distal humerus on the affected side was (33.82±4.39)°. The CT plain scan data were imported into 9yuan3D digital orthopaedic system (V3.34 software) to reconstruct three-dimensional images of both upper extremities. The simulated operation was performed with the healthy upper extremity as the reference, the best osteotomy scheme was planned, overlapped and compared, and the osteotomy guide plate was prepared. The patients were followed up regularly after operation, and the formation of callus in the osteotomy area was observed by X-ray examination. Before and after operation, the carrying angle of both upper extremities (the angle of cubitus valgus was positive, and the angle of cubitus varus was negative) and anteversion angle were measured on X-ray and CT images. At the same time, the flexion and extension range of motion of elbow joint and the external rotation range of motion of upper extremity were measured, and Mayo score was used to evaluate the function of elbow joint. Results: The operation time ranged from 34 to 46 minutes, with an average of 39 minutes. All patients were followed up 5-26 months, with a mean of 14.9 months. All the incisions healed by first intention after the operation; 2 patients had nail path irritation symptoms after Kirschner wire fixation, which improved after dressing change; no complication such as breakage and loosening of internal fixators occurred after regular X-ray review. Continuous callus formed at the osteotomy end at 4 weeks after operation, and the osteotomy end healed at 8-12 weeks after operation. At last follow-up, the carrying angle, anteversion angle, external rotation range of motion, and extension and flexion range of motion of the elbow joint of the affected side significantly improved when compared with preoperative ones ( P<0.05). Except for the extension range of motion of the healthy elbow joint ( P<0.05), there was no significant difference in other indicators between the two sides ( P>0.05). At last follow-up, the Mayo elbow score was 85-100, with an average of 99.3; 22 cases were excellent, 1 case was good, and the excellent and good rate was 100%. Conclusion: Computer-simulated osteotomy based on health-side combined with guide plate technique for treating cubitus varus deformity in adolescents can achieve precise osteotomy, which has the advantages of short operation time and easy operation, and the short-term effectiveness is satisfactory.


Subject(s)
Elbow Joint , Humeral Fractures , Joint Deformities, Acquired , Limb Deformities, Congenital , Male , Female , Humans , Adolescent , Child, Preschool , Child , Elbow , Humeral Fractures/surgery , Retrospective Studies , Joint Deformities, Acquired/etiology , Joint Deformities, Acquired/surgery , Elbow Joint/surgery , Osteotomy/methods , Humeral Head , Range of Motion, Articular , Computers , Treatment Outcome
9.
J Med Chem ; 66(21): 15006-15024, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37856840

ABSTRACT

Preclinical and clinical studies have demonstrated the synergistic effect of microtubule-targeting agents in combination with Janus kinase 2 (JAK2) inhibitors, prompting the development of single agents with enhanced therapeutic efficacy by dually inhibiting tubulin polymerization and JAK2. Herein, we designed and synthesized a series of substituted 2-amino[1,2,4]triazolopyrimidines and related heterocycles as dual inhibitors for tubulin polymerization and JAK2. Most of these compounds exhibited potent antiproliferative activity against the selected cancer cells, with compound 7g being the most active. This compound effectively inhibits both tubulin assembly and JAK2 activity. Furthermore, phosphorylated compound 7g (i.e., compound 7g-P) could efficiently convert to compound 7g in vivo. Compound 7g, whether it was administered directly or in the form of a phosphorylated prodrug (i.e., compound 7g-P), significantly inhibited the growth of A549 xenografts in nude mice. The present findings strongly suggest that compound 7g represents a promising chemotherapeutic agent with high antitumor efficacy.


Subject(s)
Antineoplastic Agents , Tubulin , Animals , Mice , Humans , Tubulin/metabolism , Structure-Activity Relationship , Tubulin Modulators/pharmacology , Tubulin Modulators/therapeutic use , Cell Line, Tumor , Drug Screening Assays, Antitumor , Polymerization , Janus Kinase 2 , Mice, Nude , Cell Proliferation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Microtubules
10.
Biomed Pharmacother ; 166: 115412, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37660652

ABSTRACT

Acute lung injury (ALI) is an inflammation-mediated respiratory disease with a high mortality rate. Medications with anti-inflammatory small molecules have been demonstrated in phase I and II clinical trials to considerably reduce the ALI mortality. In this study, two series of lansiumamide analogues were designed, synthesized, and evaluated for anti-inflammatory activity for ALI treatment. We found that compound 8n exhibited the best anti-inflammatory activity through inhibiting LPS-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and interleukin-1ß (IL-1ß) in Raw264.7 cells and activating the Nrf2/HO-1 pathway. Furthermore, we discovered in a LPS-induced ALI mice model that compound 8n significantly reduced the infiltration of inflammatory cells into lung tissue to achieve the effect of protecting lung tissues and improving ALI. Additionally, our mice model study revealed that compound 8n had a good expectorant effect. These results consistently support that lansiumamide analogue 8n represents a new class of anti-inflammatory agents with potential as a lead compound for further development into a therapeutic drug for ALI treatment.


Subject(s)
Acute Lung Injury , Lipopolysaccharides , Animals , Mice , Lipopolysaccharides/toxicity , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Inflammation , Cytokines , Disease Models, Animal
11.
Int J Food Sci Nutr ; 74(7): 730-745, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758199

ABSTRACT

Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.


Subject(s)
Inflammatory Bowel Diseases , Intestines , Humans , Intestines/physiology , Diet , Stem Cells/metabolism , Dietary Fiber/metabolism , Intestinal Mucosa/metabolism
12.
Gels ; 9(8)2023 Aug 16.
Article in English | MEDLINE | ID: mdl-37623114

ABSTRACT

Oral ulcer is a common inflammatory disease of oral mucosa, causing severe burning pain and great inconvenience to daily life. In this study, compound 3J with anti-inflammatory activity was synthesized beforehand. Following that, an intelligent composite hydrogel supported 3J was designed with sodium alginate, carboxymethyl chitosan, and chitosan quaternary ammonium salt as the skeleton, and its therapeutic effect on the rat oral ulcer model was investigated. The results show that the composite hydrogel has a dense honeycomb structure, which is conducive to drug loading and wound ventilation, and has biodegradability. It has certain antibacterial effects and good anti-inflammatory activity. When loaded with 3J, it reduced levels of TNF-α and IL-6 in inflammatory cells by up to 50.0%. It has excellent swelling and water retention properties, with a swelling rate of up to 765.0% in a pH 8.5 environment. The existence of a large number of quaternary ammonium groups, carboxyl groups, and hydroxyl groups makes it show obvious differences in swelling in different pH environments, which proves that it has double pH sensitivity. It is beneficial to adapt to the highly dynamic changes of the oral environment. Compared with single hydrogel or drug treatment, the drug-loaded hydrogel has a better effect on the treatment of oral ulcers.

13.
Front Cell Dev Biol ; 11: 1221361, 2023.
Article in English | MEDLINE | ID: mdl-37649550

ABSTRACT

Obesity is a disease commonly associated with urbanization and can also be characterized as a systemic, chronic metabolic condition resulting from an imbalance between energy intake and expenditure. The World Health Organization (WHO) has identified obesity as the most serious chronic disease that is increasingly prevalent in the world population. If left untreated, it can lead to dangerous health issues such as hypertension, hyperglycemia, hyperlipidemia, hyperuricemia, nonalcoholic steatohepatitis, atherosclerosis, and vulnerability to cardiovascular and cerebrovascular events. The specific mechanisms by which obesity affects the development of these diseases can be refined to the effect on immune cells. Existing studies have shown that the development of obesity and its associated diseases is closely related to the balance or lack thereof in the number and function of various immune cells, of which neutrophils are the most abundant immune cells in humans, infiltrating and accumulating in the adipose tissues of obese individuals, whereas NETosis, as a newly discovered type of neutrophil-related cell death, its role in the development of obesity and related diseases is increasingly emphasized. The article reviews the significant role that NETosis plays in the development of obesity and related diseases, such as diabetes and its complications. It discusses the epidemiology and negative impacts of obesity, explains the mechanisms of NETosis, and examines its potential as a targeted drug to treat obesity and associated ailments.

15.
Int J Clin Pract ; 2023: 1489905, 2023.
Article in English | MEDLINE | ID: mdl-37497125

ABSTRACT

Objective: In this study, we aimed to explore the efficacy of the autologous platelet-rich plasma (PRP) interventional circulatory perfusion combined with radiofrequency ablation and thermocoagulation (RFAT) in the treatment of discogenic low back pain (DLBP). Methods: From January 2020 to November 2022, 158 patients of the Second Affiliated Hospital of Nanchang University were selected as the study subjects, and 24 patients met the exclusion criteria. The 134 patients who met the inclusion criteria were divided into 65 patients in the control group (3 patients lost to follow-up) and 69 patients in the observation group (5 patients lost to follow-up), so 126 patients were actually completed the study, including 62 patients in the control group and 64 patients in the observation group. The control group responsible disc received RFAT, and an interventional circulatory perfusion was performed; the observation group received RFAT, and an interventional circulatory perfusion was performed, and then autologous PRP 2 ml was injected. Visual Analog Scale (VAS) and Oswestry Disability Index (ODI) were performed before and 4 and 8 weeks after treatment, and the efficacy was evaluated at 4 and 8 weeks after treatment. The changes of lumbar disc MRI before and after treatment were observed. Results: The differences in the Visual Analog Scale (VAS) scores and the Oswestry Disability Index (ODI) between the observation group and the control group before the treatment were not statistically significant (P > 0.05 in both). However, four weeks and eight weeks after the treatment, the VAS scores and the ODIs were significantly lower in both groups than those before the treatment (P < 0.05 in both). In terms of the therapeutic efficacy, eight weeks after the treatment, the total effective rates in the control group and the observation group were 67.7% and 87.5%, respectively, with the observation group being superior to the control group (P < 0.05). Conclusion: After RFAT, interventional circulatory perfusion combined with autologous PRP intramedullary injection in the lumbar disc is a safe and effective treatment for DLBP, and it had superior long-term effects in improving the clinical symptoms and patient dysfunction than the RFAT and interventional circulatory perfusion.


Subject(s)
Low Back Pain , Platelet-Rich Plasma , Radiofrequency Ablation , Humans , Low Back Pain/therapy , Treatment Outcome , Electrocoagulation , Perfusion , Lumbar Vertebrae/surgery
16.
J Org Chem ; 88(13): 8379-8386, 2023 Jul 07.
Article in English | MEDLINE | ID: mdl-37312277

ABSTRACT

Efficient access to the synthesis of lactam-derived quinoline through a bicyclic amidine-triggered cyclization reaction from readily prepared o-alkynylisocyanobenzenes has been developed. The reaction was initiated by nucleophilic attack of the bicyclic amidines to o-alkynylisocyanobenzenes, subsequently with intramolecular cyclization to produce a DBU-quinoline-based amidinium salt, followed by hydrolysis to afford the lactam-derived quinoline in moderate to good yields.


Subject(s)
Lactams , Quinolines , Cyclization , Amidines , Hydrolysis
17.
Braz J Microbiol ; 54(3): 2527-2534, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37344656

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is a virus that can cause diarrhea in pigs, resulting in significant economic losses to the pig industry. The mutation of the virus and its co-infection with other enteroviruses leads to poor control of PEDV infection. In this study, we found that the diarrhea outbreak in a pig farm in Shandong Province was mainly caused by PEDV infection. Through high-throughput sequencing, we also detected one other diarrhea-related virus (porcine kobuvirus). In the phylogenetic analysis and molecular characterization of the detected PEDV S gene and PKV, it was found that the S gene of the PEDV strain detected in this study (named SD22-2) had more mutations than the CV777 strain. The highest homology between PKV (named SD/2022/China) detected in this study and other strains was only 89.66%. Based on polyprotein, we divided SD/2022/China strains into a new grouping (designated group 4) and detected recombination signals. In summary, SD22-2 detected in this study is a new PEDV variant strain, and SD/2022/China strain might be a novel PKV strain. We also found the co-infection of the new PEDV variant and the novel PKV isolated from piglets with diarrhea. Our data suggested the importance of continuous surveillance of PEDV and PKV.


Subject(s)
Coinfection , Coronavirus Infections , Kobuvirus , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Swine , Phylogeny , Porcine epidemic diarrhea virus/genetics , Kobuvirus/genetics , Coronavirus Infections/epidemiology , Diarrhea/epidemiology , China/epidemiology
18.
Front Endocrinol (Lausanne) ; 14: 1114424, 2023.
Article in English | MEDLINE | ID: mdl-37229456

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by hyperglycemia and insulin resistance. The incidence of T2DM is increasing globally, and a growing body of evidence suggests that gut microbiota dysbiosis may contribute to the development of this disease. Gut microbiota-derived metabolites, including bile acids, lipopolysaccharide, trimethylamine-N-oxide, tryptophan and indole derivatives, and short-chain fatty acids, have been shown to be involved in the pathogenesis of T2DM, playing a key role in the host-microbe crosstalk. This review aims to summarize the molecular links between gut microbiota-derived metabolites and the pathogenesis of T2DM. Additionally, we review the potential therapy and treatments for T2DM using probiotics, prebiotics, fecal microbiota transplantation and other methods to modulate gut microbiota and its metabolites. Clinical trials investigating the role of gut microbiota and its metabolites have been critically discussed. This review highlights that targeting the gut microbiota and its metabolites could be a potential therapeutic strategy for the prevention and treatment of T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Probiotics , Humans , Diabetes Mellitus, Type 2/therapy , Diabetes Mellitus, Type 2/metabolism , Prebiotics , Probiotics/therapeutic use , Fecal Microbiota Transplantation
19.
Chem Commun (Camb) ; 59(47): 7228-7231, 2023 Jun 08.
Article in English | MEDLINE | ID: mdl-37221891

ABSTRACT

This paper reports a practical and versatile oxidative cyclization of 2-arylethynylanilines towards 2-hydroxy-2-substituted indol-3-ones via a copper-catalyzed radical approach in the presence of O2. The transformation of 2-hydroxy-2-arylindol-3-ones to 3-hydroxy-3-arylindol-2-ones proceeds well with good yields and highlights the practicability and utility of this catalytic system. Mechanistic investigations showed that the acetyl substituent on 2-arylaethynylanilines played an important role in the formation of the cyclic products and the reaction proceeded via an N-center radical-based 5-endo-dig aza-cyclization pathway.


Subject(s)
Copper , Indoles , Molecular Structure , Cyclization , Catalysis , Oxidative Stress
20.
Mol Divers ; 2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37119457

ABSTRACT

Alzheimer's disease (AD) is a complex multifactorial neurodegenerative disease. Metal ion dyshomeostasis and Aß aggregation have been proposed to contribute to AD progression. Metal ions can bind to Aß and promote Aß aggregation, and ultimately lead to neuronal death. Bifunctional (metal chelation and Aß interaction) compounds are showing promise against AD. In this work, eleven new 3,3'-diamino-2,2'-bipyridine derivatives 4a-4k were synthesized, and evaluated as bifunctional agents for AD treatment. In vitro Aß aggregation inhibition assay confirmed that most of the synthesized compounds exhibited significant self-induced Aß1-42 aggregation inhibition. Among them, compound 4d displayed the best inhibitory potency of self-induced Aß1-42 aggregation with IC50 value of 9.4 µM, and it could selectively chelate with Cu2+ and exhibited 66.2% inhibition of Cu2+-induced Aß1-42 aggregation. Meanwhile, compound 4d showed strong neuroprotective activity against Aß1-42 and Cu2+-treated Aß1-42 induced cell damage. Moreover, compound 4d in high dose significantly reversed Aß-induced memory impairment in mice.

SELECTION OF CITATIONS
SEARCH DETAIL
...