Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.432
Filter
1.
Small ; : e2402752, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822717

ABSTRACT

Surface modification of Cu current collectors (CCs) is proven to be an effective method for protecting lithium metal anodes. However, few studies have focused on the quality and efficiency of modification layers. Herein, a novel home-made filtered cathode vacuum arc (FCVA) co-deposition system with high modification efficiency, good repeatability and environmental friendliness is proposed to realize the wide range regulation of film composition, structure and performance. Through this system, ZnMgTiAl quaternary alloy films, which have good affinity with Li are successfully constructed on Cu CCs, and the fully enhanced electrochemical performances are achieved. Symmetrical cells constructed with modified CCs maintained a fairly low voltage hysteresis of only 13 mV after 2100 h at a current density of 1 mA cm-2. In addition, the capacity retention rate is as high as 75.0% after 100 cycles in the full cells. The influence of alloy films on the dynamic evolution process of constructing stable artificial solid electrolyte interphase (SEI) layer is revealed by in situ infrared (IR) spectroscopy. This work provides a promising route for designing various feasible modification films for LMBs, and it displays better industrial application prospects than the traditional chemical methods owing to the remarkable controllability and scale-up capacity.

2.
Food Chem Toxicol ; : 114773, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823497

ABSTRACT

Fluoride, a ubiquitous environmental compound, carries significant health risks at excessive levels. This study investigated the reproductive toxicity of fluoride exposure during puberty in mice, focusing on its impact on testicular development, spermatogenesis, and underlying mechanisms. The results showed that fluoride exposure during puberty impaired testicular structure, induced germ cell apoptosis, and reduced sperm counts in mice. Additionally, the SOD activity and GSH content were significantly decreased, while MDA content was significantly elevated in the NaF group. Immunohistochemistry showed an increase in the number of cells positive for GRP78, a key ER stress marker. Moreover, qRT-PCR and western blot analyses confirmed the upregulation of both Grp78 mRNA and protein expression, as well as increased mRNA expression of other ER stress-associated genes (Grp94, chop, Atf6, Atf4, and Xbp1) and enhanced protein expression of phosphorylated PERK, IRE1α, eIF2α, JNK, XBP-1, ATF-6α, ATF-4, and CHOP. In conclusion, our findings demonstrate that fluoride exposure during puberty impairs testicular structure, induces germ cell apoptosis, and reduces sperm counts in mice. ER stress may participate in testicular cell apoptosis, and contribute to the testicular damage and decreased sperm counts induced by fluoride.

3.
Biol Res ; 57(1): 36, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822414

ABSTRACT

BACKGROUND: Helicase for meiosis 1 (HFM1), a putative DNA helicase expressed in germ-line cells, has been reported to be closely associated with premature ovarian insufficiency (POI). However, the underlying molecular mechanism has not been clearly elucidated. The aim of this study was to investigate the function of HFM1 in the first meiotic prophase of mouse oocytes. RESULTS: The results suggested that the deficiency of HFM1 resulting in increased apoptosis and depletion of oocytes in mice, while the oocytes were arrested in the pachytene stage of the first meiotic prophase. In addition, impaired DNA double-strand break repair and disrupted synapsis were observed in the absence of HFM1. Further investigation revealed that knockout of HFM1 promoted ubiquitination and degradation of FUS protein mediated by FBXW11. Additionally, the depletion of HFM1 altered the intranuclear localization of FUS and regulated meiotic- and oocyte development-related genes in oocytes by modulating the expression of BRCA1. CONCLUSIONS: These findings elaborated that the critical role of HFM1 in orchestrating the regulation of DNA double-strand break repair and synapsis to ensure meiosis procession and primordial follicle formation. This study provided insights into the pathogenesis of POI and highlighted the importance of HFM1 in maintaining proper meiotic function in mouse oocytes.


Subject(s)
Meiotic Prophase I , Oocytes , Ubiquitination , Animals , Oocytes/metabolism , Meiotic Prophase I/physiology , Female , Mice , DNA Breaks, Double-Stranded , RNA-Binding Protein FUS/metabolism , RNA-Binding Protein FUS/genetics , Meiosis/physiology , DNA Repair/physiology , Mice, Knockout , Apoptosis/physiology
4.
Org Lett ; 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38825794

ABSTRACT

Spirolactones are widely found in pharmaceuticals and bioactive natural products. However, efficient and environmentally friendly approaches to accessing spirolactones are still highly desirable. Herein, a novel electrochemical synthesis of spirolactones from α-tetralone derivatives with methanol as a C1 source is described. This electrochemical reaction exhibits a high efficiency and good functional group tolerance.

5.
Aesthetic Plast Surg ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831066

ABSTRACT

BACKGROUND: Porous high-density polyethylene (pHDPE) is an alternative material for a septal extension graft (SEG) in oriental rhinoplasty when autologous cartilage is limited. Although nasal packing (NP) and trans-septal suturing (TSS) techniques are routine procedures to obviate the dead space after septoplasty, they are associated with certain discomforts and complications. OBJECTIVE: To investigate the application of a submucosal trans-septal suturing (STSS) technique after SEG with pHDPE. METHODS: A prospective study was conducted on 60 female participants who underwent SEG with pHDPE. The participants were randomly divided into the NP group and STSS group. The extra surgical duration of NP and STSS, pain, nasal obstruction, and sleeping disturbance as well as postoperative complications were recorded and compared between groups. RESULTS: No significant difference was found between group NP and group STSS in terms of mean age. The mean extra surgical duration of group STSS was significantly longer than group NP. There were significant higher pains of group NP at 24 hours and 48 hours postoperatively, compared with group STSS. The NP group also experienced significantly more nasal obstruction and sleep disturbance within 48h postoperatively compared to the STSS group. There was one infection in each group, minor bleeding in two NP patients, and one STSS patient. There was no major bleeding, hematoma, graft exposure, or septal perforation in both groups. CONCLUSION: Although STSS needs a longer extra surgical duration than NP, it significantly improves the patient's postoperative comfort with a faster return to normal respiration compared to NP. LEVEL OF EVIDENCE I: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

6.
BMC Infect Dis ; 24(1): 550, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824508

ABSTRACT

BACKGROUND: Influenza A virus infections can occur in multiple species. Eurasian avian-like swine influenza A (H1N1) viruses (EAS-H1N1) are predominant in swine and occasionally infect humans. A Eurasian avian-like swine influenza A (H1N1) virus was isolated from a boy who was suffering from fever; this strain was designated A/Shandong-binzhou/01/2021 (H1N1). The aims of this study were to investigate the characteristics of this virus and to draw attention to the need for surveillance of influenza virus infection in swine and humans. METHODS: Throat-swab specimens were collected and subjected to real-time fluorescent quantitative polymerase chain reaction (RT‒PCR). Positive clinical specimens were inoculated onto Madin-Darby canine kidney (MDCK) cells to isolate the virus, which was confirmed by a haemagglutination assay. Then, whole-genome sequencing was carried out using an Illumina MiSeq platform, and phylogenetic analysis was performed with MEGA X software. RESULTS: RT‒PCR revealed that the throat-swab specimens were positive for EAS-H1N1, and the virus was subsequently successfully isolated from MDCK cells; this strain was named A/Shandong-binzhou/01/2021 (H1N1). Whole-genome sequencing and phylogenetic analysis revealed that A/Shandong-binzhou/01/2021 (H1N1) is a novel triple-reassortant EAS-H1N1 lineage that contains gene segments from EAS-H1N1 (HA and NA), triple-reassortant swine influenza H1N2 virus (NS) and A(H1N1) pdm09 viruses (PB2, PB1, PA, NP and MP). CONCLUSIONS: The isolation and analysis of the A/Shandong-binzhou/01/2021 (H1N1) virus provide further evidence that EAS-H1N1 poses a threat to human health, and greater attention should be given to the surveillance of influenza virus infections in swine and humans.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Phylogeny , Influenza A Virus, H1N1 Subtype/genetics , Influenza A Virus, H1N1 Subtype/isolation & purification , Influenza A Virus, H1N1 Subtype/classification , China/epidemiology , Humans , Male , Animals , Influenza, Human/virology , Influenza, Human/epidemiology , Dogs , Madin Darby Canine Kidney Cells , Child , Swine , Whole Genome Sequencing , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/veterinary , Orthomyxoviridae Infections/epidemiology , Genome, Viral
7.
Opt Lett ; 49(9): 2441-2444, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38691739

ABSTRACT

Three-dimensional optical waveguides with hollow channels have many advantages, such as strong mode confinement and excellent dispersion control ability. Femtosecond laser enhanced wet etching is widely used to fabricate hollow channel waveguides in transparent dielectric materials. We propose a method for fabricating hollow channel waveguides in YAG using femtosecond laser enhanced wet etching with a simpler fabrication process and shorter etching time compared with the previous work. After 90 h of etching, a series of helical hollow channel waveguides with a length of 5 mm and a radius of 32 µm were successfully fabricated. At a pitch of 3 µm, the waveguide exhibited a loss (including coupling loss and transmission loss) as low as 0.68 dB at 1030 nm. The helical hollow channel waveguide also exhibited exceptional isotropic light confinement capability and remarkable supercontinuum-generating properties. Moreover, helical hollow channel waveguides with a radius of 2 µm were successfully fabricated. According to simulations, waveguides of such size can effectively control dispersion. Our work presents, to our knowledge, a novel approach to fabricating hollow channel waveguides with arbitrary lengths using femtosecond laser-enhanced wet etching.

8.
Article in English | MEDLINE | ID: mdl-38704792

ABSTRACT

PURPOSE: Eye gaze tracking and pupillometry are evolving areas within the field of tele-robotic surgery, particularly in the context of estimating cognitive load (CL). However, this is a recent field, and current solutions for gaze and pupil tracking in robotic surgery require assessment. Considering the necessity of stable pupillometry signals for reliable cognitive load estimation, we compare the accuracy of three eye trackers, including head and console-mounted designs. METHODS: We conducted a user study with the da Vinci Research Kit (dVRK), to compare the three designs. We collected eye tracking and dVRK video data while participants observed nine markers distributed over the dVRK screen. We compute and analyze pupil detection stability and gaze prediction accuracy for the three designs. RESULTS: Head-worn devices present better stability and accuracy of gaze prediction and pupil detection compared to console-mounted systems. Tracking stability along the field of view varies between trackers, with gaze predictions detected at invalid zones of the image with high confidence. CONCLUSION: While head-worn solutions show benefits in confidence and stability, our results demonstrate the need to improve eye tacker performance regarding pupil detection, stability, and gaze accuracy in tele-robotic scenarios.

9.
Anal Chem ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730304

ABSTRACT

Rapidly identifying and quantifying Gram-positive bacteria are crucial to diagnosing and treating bacterial lower respiratory tract infections (LRTIs). This work presents a field-deployable biosensor for detecting Gram-positive bacteria from exhaled breath condensates (EBCs) based on peptidoglycan recognition using an aptamer. Dielectrophoretic force is employed to enrich the bacteria in 10 s without additional equipment or steps. Concurrently, the measurement of the sensor's interfacial capacitance is coupled to quantify the bacteria during the enrichment process. By incorporation of a semiconductor condenser, the whole detection process, including EBC collection, takes about 3 min. This biosensor has a detection limit of 10 CFU/mL, a linear range of up to 105 CFU/mL and a selectivity of 1479:1. It is cost-effective and disposable due to its low cost. The sensor provides a nonstaining, culture-free and PCR-independent solution for noninvasive and real-time diagnosis of Gram-positive bacterial LRTIs.

10.
Sci Rep ; 14(1): 10555, 2024 05 08.
Article in English | MEDLINE | ID: mdl-38719902

ABSTRACT

Heat stress exposure in intermittent heat waves and subsequent exposure during war theaters pose a clinical challenge that can lead to multi-organ dysfunction and long-term complications in the elderly. Using an aged mouse model and high-throughput sequencing, this study investigated the molecular dynamics of the liver-brain connection during heat stress exposure. Distinctive gene expression patterns induced by periodic heat stress emerged in both brain and liver tissues. An altered transcriptome profile showed heat stress-induced altered acute phase response pathways, causing neural, hepatic, and systemic inflammation and impaired synaptic plasticity. Results also demonstrated that proinflammatory molecules such as S100B, IL-17, IL-33, and neurological disease signaling pathways were upregulated, while protective pathways like aryl hydrocarbon receptor signaling were downregulated. In parallel, Rantes, IRF7, NOD1/2, TREM1, and hepatic injury signaling pathways were upregulated. Furthermore, current research identified Orosomucoid 2 (ORM2) in the liver as one of the mediators of the liver-brain axis due to heat exposure. In conclusion, the transcriptome profiling in elderly heat-stressed mice revealed a coordinated network of liver-brain axis pathways with increased hepatic ORM2 secretion, possibly due to gut inflammation and dysbiosis. The above secretion of ORM2 may impact the brain through a leaky blood-brain barrier, thus emphasizing intricate multi-organ crosstalk.


Subject(s)
Brain , Gene Expression Profiling , Liver , Animals , Mice , Liver/metabolism , Brain/metabolism , Male , Transcriptome , Brain-Gut Axis , Heat-Shock Response/genetics , Mice, Inbred C57BL , Signal Transduction , Aging/genetics , Aging/metabolism
11.
J Appl Clin Med Phys ; : e14380, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715381

ABSTRACT

PURPOSE: The aim of this study is to develop a deep learning model capable of discriminating between pancreatic plasma cystic neoplasms (SCN) and mucinous cystic neoplasms (MCN) by leveraging patient-specific clinical features and imaging outcomes. The intent is to offer valuable diagnostic support to clinicians in their clinical decision-making processes. METHODS: The construction of the deep learning model involved utilizing a dataset comprising abdominal magnetic resonance T2-weighted images obtained from patients diagnosed with pancreatic cystic tumors at Changhai Hospital. The dataset comprised 207 patients with SCN and 93 patients with MCN, encompassing a total of 1761 images. The foundational architecture employed was DenseNet-161, augmented with a hybrid attention mechanism module. This integration aimed to enhance the network's attentiveness toward channel and spatial features, thereby amplifying its performance. Additionally, clinical features were incorporated prior to the fully connected layer of the network to actively contribute to subsequent decision-making processes, thereby significantly augmenting the model's classification accuracy. The final patient classification outcomes were derived using a joint voting methodology, and the model underwent comprehensive evaluation. RESULTS: Using the five-fold cross validation, the accuracy of the classification model in this paper was 92.44%, with an AUC value of 0.971, a precision rate of 0.956, a recall rate of 0.919, a specificity of 0.933, and an F1-score of 0.936. CONCLUSION: This study demonstrates that the DenseNet model, which incorporates hybrid attention mechanisms and clinical features, is effective for distinguishing between SCN and MCN, and has potential application for the diagnosis of pancreatic cystic tumors in clinical practice.

12.
Cancer Control ; 31: 10732748241257142, 2024.
Article in English | MEDLINE | ID: mdl-38769028

ABSTRACT

OBJECTIVES: To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND: MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS: The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS: ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS: This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.


Subject(s)
Disease Progression , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , RNA, Circular , RNA-Binding Proteins , Humans , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , RNA, Circular/genetics , Gene Expression Regulation, Neoplastic , Male , Cell Proliferation/genetics , Cell Line, Tumor , Female , Mice , Animals , Cell Movement/genetics , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
13.
Small ; : e2400997, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712477

ABSTRACT

Dielectric capacitors are widely used in advanced electrical and electronic systems due to the rapid charge/discharge rates and high power density. High comprehensive energy storage properties are the ultimate ambition in the field of application achievements. Here, the high-entropy strategy is proposed to design and fabricate single-phase homogeneous (Bi0.5Ba0.1Sr0.1Ca0.2Na0.1)(Fe0.5Ti0.3Zr0.1Nb0.1)O3 ceramic, the hierarchical heterostructure including rhombohedral-tetragonal multiphase nanoclusters and locally disordered oxygen octahedral tilt can lead to the increased dielectric relaxation, diffused phase transition, diverse local polarization configurations, grain refinement, ultrasmall polar nanoregions, large random field, delayed polarization saturation and improved breakdown field. Accordingly, a giant Wrec ≈13.3 J cm-3 and a high η ≈78% at 66.4 kV mm-1 can be simultaneously achieved in the lead-free high-entropy BiFeO3-based ceramic, showing an obvious advantage in overall energy-storage properties over BiFeO3-based lead-free ceramics. Moreover, an ultrafast discharge rate (t0.9 = 18 ns) can be achieved at room temperature, concomitant with favorable temperature stability in the range of 20-160 °C, due to the enhanced diffuse phase transition and fast polarization response. This work provides a feasible pathway to design and generate dielectric materials exhibiting high comprehensive energy-storage performance.

14.
Int Endod J ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713190

ABSTRACT

AIM: Endothelial cells (EDs) play a key role in angiogenesis and are associated with granulomatous lesions in patients with chronic apical periodontitis (CAP). This study aimed to investigate the diversity of EDs using single-cell ribonucleic acid sequencing (scRNA-seq) and to evaluate the regulation of intercellular adhesion molecule 1 (ICAM1) on the ferroptosis-related protein, prostaglandin-endoperoxide synthase 2 (PTGS2), in CAP. METHODOLOGY: EDs from the uploaded scRNA-seq data of five CAP samples (GSE181688 and GSE197680) were categorized using distinct marker genes. The interactions between vein EDs (veinEndo) and other cell types were analysed using CellPhoneDB. Differentially expressed proteins in the proteomics of human umbilical vein EDs (HUVECs) and THP-1-derived macrophages infected with Porphyromonas gingivalis were compared with the differentially expressed genes (DEGs) of VeinEndo in scRNA-seq of CAP versus healthy control periodontal tissues. The protein-protein interaction of ICAM1-PTGS2 in macrophages and HUVECs was validated by adding recombinant ICAM1, ICAM1 inhibitor and PTGS2 inhibitor using real-time polymerase chain reaction (PCR), western blotting, and immunofluorescence staining. RESULTS: EDs in patients with CAP were divided into eight subclusters: five vein ED, capillaries, arterials and EC (PLA). There were 29 mutually upregulated DEGs and two mutually downregulated DEGs in vein cells in the scRNA-seq data, as well as differentially expressed proteins in the proteomics of HUVECs. Real-time PCR and immunofluorescence staining showed that ICAM1 and PTGS2 were highly expressed in CAP, infected HUVECs, and macrophages. Recombinant protein ICAM1 may improve PTGS2 expression, reactive oxygen species (ROS), and Fe2+ levels and decrease glutathione peroxidase 4 (GPX4) and SLC7A11 protein levels. ICAM1 inhibitor may inverse the above changes. CONCLUSIONS: scRNA-seq revealed the diversity of EDs in CAP and identified the possible regulation of ICAM1 by the ferroptosis-related protein, PTGS2, in infected HUVECs and macrophages, thus providing a basis for therapeutic approaches that target the inflammatory microenvironment of CAP.

15.
Phytomedicine ; 130: 155642, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38759315

ABSTRACT

BACKGROUND: Huangkui capsule (HKC), as an ethanol extract of Abelmoschus manihot (L.), has a significant efficacy in treatment of the patients with diabetic kidney disease (DKD). The bioactive ingredients of HKC mainly include the flavonoids such as rutin, hyperoside, hibifolin, isoquercetin, myricetin, quercetin and quercetin-3-O-robinobioside. PURPOSE: To explore the molecular mechanisms of A. manihot in treatment of DKD. STUDY DESIGN: A single-cell RNA sequencing analysis of kidneys in db/db mice with and without HKC administration. METHODS: Urinary biochemical and histopathological examination in C57BL/6 and db/db mice of DKD and HKC groups was done. Single-cell RNA sequencing pipeline was then performed. The regulatory mechanisms of seven flavonoids in HKC were revealed by cell communication, prediction of transcription factor regulatory network, and molecular docking. RESULTS: By constructing ligand-receptor regulatory network and performing molecular docking between 75 receptors with different activities and seven flavonoids. 11 key receptors in 4 cell types (segment 3 proximal convoluted tubular cell, ascending limbs of the loop of Henle, distal convoluted tubule, and T cell) in kidneys were found to be directly interacted with HKC. The interactions regulated 8 downstream regulons. The docking receptors in T cell led to transcriptional event differences in the regulons such as Cebpb, Rel, Tbx21 and Klf2 and consequently affected the activation, differentiation, and infiltration of T cell, while the receptors Tgfbr1 and Ldlr in stromal cells of kidneys were closely associated with the downstream transcriptional events of renal injury and proteinuria in DKD. CONCLUSION: The current study provides novel information of the key receptors and regulons in renal cells for a better understanding of the cell type specific molecular mechanisms of A. manihot in treatment of DKD.

16.
Exp Eye Res ; 244: 109919, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38729254

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of vision loss among the elderly, which is primarily attributed to oxidative stress-induced damage to the retinal pigment epithelium (RPE). Human amniotic mesenchymal stem cells (hAMSC) were considered to be one of the most promising stem cells for clinical application due to their low immunogenicity, tissue repair ability, pluripotent potential and potent paracrine effects. The conditional medium (hAMSC-CM) and exosomes (hAMSC-exo) derived from hAMSC, as mediators of intercellular communication, play an important role in the treatment of retinal diseases, but their effect and mechanism on oxidative stress-induced retinal degeneration are not explored. Here, we reported that hAMSC-CM alleviated H2O2-induced ARPE-19 cell death through inhibiting mitochondrial-mediated apoptosis pathway in vitro. The overproduction of reactive oxygen species (ROS), alteration in mitochondrial morphology, loss of mitochondrial membrane potential and elevation of Bax/Bcl2 ratio in ARPE-19 cells under oxidative stress were efficiently reversed by hAMSC-CM. Moreover, it was found that hAMSC-CM protected cells against oxidative injury via PI3K/Akt/FoxO3 signaling. Intriguingly, exosome inhibitor GW4869 alleviated the inhibitory effect of hAMSC-CM on H2O2-induced decrease in cell viability of ARPE-19 cells. We further demonstrated that hAMSC-exo exerted the similar protective effect on ARPE-19 cells against oxidative damage as hAMSC-CM. Additionally, both hAMSC-CM and hAMSC-exo ameliorated sodium iodate-induced deterioration of RPE and retinal damage in vivo. These results first indicate that hAMSC-CM and hAMSC-exo protect RPE cells from oxidative damage by regulating PI3K/Akt/FoxO3 pathway, suggesting hAMSC-CM and hAMSC-exo will be a promising cell-free therapy for the treatment of AMD in the future.

17.
Metab Eng ; 83: 206-215, 2024 May.
Article in English | MEDLINE | ID: mdl-38710300

ABSTRACT

Shewanella oneidensis MR-1 has found widespread applications in pollutant transformation and bioenergy production, closely tied to its outstanding heme synthesis capabilities. However, this significant biosynthetic potential is still unexploited so far. Here, we turned this bacterium into a highly-efficient bio-factory for green synthesis of 5-Aminolevulinic Acid (5-ALA), an important chemical for broad applications in agriculture, medicine, and the food industries. The native C5 pathway genes of S. oneidensis was employed, together with the introduction of foreign anti-oxidation module, to establish the 5-ALA production module, resulting 87-fold higher 5-ALA yield and drastically enhanced tolerance than the wild type. Furthermore, the metabolic flux was regulated by using CRISPR interference and base editing techniques to suppress the competitive pathways to further improve the 5-ALA titer. The engineered strain exhibited 123-fold higher 5-ALA production capability than the wild type. This study not only provides an appealing new route for 5-ALA biosynthesis, but also presents a multi-dimensional modularized engineering strategy to broaden the application scope of S. oneidensis.


Subject(s)
Aminolevulinic Acid , Metabolic Engineering , Shewanella , Shewanella/genetics , Shewanella/metabolism , Aminolevulinic Acid/metabolism
18.
Clin Biomech (Bristol, Avon) ; 116: 106270, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38776646

ABSTRACT

BACKGROUND: A novel interspinous fixation system based on anatomical parameters and incorporating transfacetopedicular screws, was developed to treat degenerative disc diseases. The biomechanical characteristics of the novel system were evaluated using finite element analysis in comparison to other classical interspinous spacers. METHODS: The L1-S1 lumbar spine finite element models were surgically implanted with the novel system, Coflex and DIAM devices at the L4/L5 segment to assess the range of motion, the pression distribution of intervertebral disc, the peak stresses on the spinous process and implant during various motions. FINDINGS: Range of motions of the L4/L5 surgical segment were reduced by 29.13%, 61.27%, 77.35%, 33.33%, and the peak stresses of intervertebral disc were decreased by 36.82%, 67.31%, 73.00%, 69.57% for the novel system in flexion, extension, lateral bending, and axial rotation when compared with the Coflex, and they were declined by 34.53%, 57.86%, 75.81%, 25.21%; 36.22%, 67.31%, 75.01%, 71.40% compared with DIAM. The maximum stresses of the spinous process were 29.93 MPa, 24.66 MPa, 14.45 MPa, 24.37 MPa in the novel system, and those of Coflex and DIAM were 165.3 MPa, 109 MPa, 84.79 MPa, 47.66 MPa and 52.59 MPa, 48.78 MPa, 50.27 MPa, 44.16 MPa during the same condition. INTERPRETATION: Compared to other interspinous spacer devices, the novel interspinous fixation system demonstrated excellent stability, effectively distributing load on the intervertebral disc, and reducing the risk of spinous process fractures. The personalized design of the novel interspinous fixation system could be a viable option for treating degenerative disc diseases.

19.
FASEB J ; 38(10): e23666, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780091

ABSTRACT

Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with erythrocyte traits. However, the functional variants and their working mechanisms remain largely unknown. Here, we reported that the SNP of rs80207740, which was associated with red blood cell (RBC) volume and hemoglobin content across populations, conferred enhancer activity to XPO7 gene via allele-differentially binding to Ikaros family zinc finger 1 (IKZF1). We showed that the region around rs80207740 was an erythroid-specific enhancer using reporter assays, and that the G-allele further enhanced activity. 3D genome evidence showed that the enhancer interacted with the XPO7 promoter, and eQTL analysis suggested that the G-allele upregulated expression of XPO7. We further showed that the rs80207740-G allele facilitated the binding of transcription factor IKZF1 in EMSA and ChIP analyses. Knockdown of IKZF1 and GATA1 resulted in decreased expression of Xpo7 in both human and mouse erythroid cells. Finally, we constructed Xpo7 knockout mouse by CRISPR/Cas9 and observed anemic phenotype with reduced volume and hemoglobin content of RBC, consistent to the effect of rs80207740 on erythrocyte traits. Overall, our study demonstrated that rs80207740 modulated erythroid indices by regulating IKZF1 binding and Xpo7 expression.


Subject(s)
Alleles , Erythrocytes , Genome-Wide Association Study , Ikaros Transcription Factor , Polymorphism, Single Nucleotide , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Humans , Animals , Mice , Erythrocytes/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Promoter Regions, Genetic
20.
Front Cell Infect Microbiol ; 14: 1375312, 2024.
Article in English | MEDLINE | ID: mdl-38779562

ABSTRACT

Competence development is essential for bacterial transformation since it enables bacteria to take up free DNA from the surrounding environment. The regulation of teichoic acid biosynthesis is tightly controlled during pneumococcal competence; however, the mechanism governing this regulation and its impact on transformation remains poorly understood. We demonstrated that a defect in lipoteichoic acid ligase (TacL)-mediated lipoteichoic acids (LTAs) biosynthesis was associated with impaired pneumococcal transformation. Using a fragment of tacL regulatory probe as bait in a DNA pulldown assay, we successfully identified several regulatory proteins, including ComE. Electrophoretic mobility shift assays revealed that phosphomimetic ComE, but not wild-type ComE, exhibited specific binding to the probe. DNase I footprinting assays revealed the specific binding sequences encompassing around 30 base pairs located 31 base pairs upstream from the start codon of tacL. Expression of tacL was found to be upregulated in the ΔcomE strain, and the addition of exogenous competence-stimulating peptide repressed the tacL transcription in the wild-type strain but not the ΔcomE mutant, indicating that ComE exerted a negative regulatory effect on the transcription of tacL. Mutation in the JH2 region of tacL upstream regulatory sequence led to increased LTAs abundance and displayed higher transformation efficiency. Collectively, our work identified the regulatory mechanisms that control LTAs biosynthesis during competence and thereby unveiled a repression mechanism underlying pneumococcal transformation.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Lipopolysaccharides , Streptococcus pneumoniae , Teichoic Acids , Transformation, Bacterial , Teichoic Acids/biosynthesis , Teichoic Acids/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Lipopolysaccharides/biosynthesis , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/metabolism , Transcription, Genetic , Promoter Regions, Genetic , DNA Transformation Competence , Mutation , Protein Binding , Ligases/genetics , Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...