Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging Neurosci ; 13: 751913, 2021.
Article in English | MEDLINE | ID: mdl-34744692

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative condition that causes cognitive impairment and other neuropsychiatric symptoms. Previously, little research has thus far investigated whether methamphetamine (MAMPH) can enhance cognitive function or ameliorate AD symptoms. This study examined whether a low dose of MAMPH can induce conditioned taste aversion (CTA) learning, or can increase plasma corticosterone levels, neural activity, and neural plasticity in the medial prefrontal cortex (mPFC) (responsible for cognitive function), the nucleus accumbens (NAc) and the amygdala (related to rewarding and aversive emotion), and the hippocampus (responsible for spatial learning). Furthermore, the excitations or lesions of the prelimbic cortex (PrL) can affect MAMPH-induced CTA learning, plasma corticosterone levels, and neural activity or plasticity in the mPFC [i.e., PrL, infralimbic cortex (IL), cingulate cortex 1 (Cg1)], the NAc, the amygdala [i.e., basolateral amygdala (BLA) and central amygdala (CeA)], and the hippocampus [i.e., CA1, CA2, CA3, and dentate gyrus (DG)]. In the experimental procedure, the rats were administered either saline or NMDA solutions, which were injected into the PrL to excite or destroy PrL neurons. Additionally, rats received 0.1% saccharin solution for 15 min, followed by intraperitoneal injections of either normal saline or 1 mg/kg MAMPH to induce CTA. A one-way ANOVA was performed to analyze the effects of saccharin intake on CTA, plasma corticosterone levels, and the expression of c-Fos and p-ERK. The results showed that the MAMPH induced CTA learning and increased plasma corticosterone levels. The mPFC, and particularly the PrL and IL and the DG of the hippocampus, appeared to show increased neural activity in c-Fos expression or neural plasticity in p-ERK expression. The excitation of the PrL neurons upregulated neural activity in c-Fos expression and neural plasticity in p-ERK expression in the PrL and IL. In summary, MAMPH may be able to improve cognitive and executive function in the brain and reduce AD symptoms. Moreover, the excitatory modulation of the PrL with MAMPH administration can facilitate MAMPH-induced neural activity and plasticity in the PrL and IL of the mPFC. The present data provide clinical implications for developing a possible treatment for AD in an animal model.

2.
Front Physiol ; 11: 648, 2020.
Article in English | MEDLINE | ID: mdl-32625116

ABSTRACT

Visual attack for prey capture in cuttlefish involves three well characterized sequential stages: attention, positioning, and seizure. This visually guided behavior requires accurate sensorimotor integration of information on the target's direction and tentacular strike control. While the behavior of cuttlefish visual attack on a stationary prey has been described qualitatively, the kinematics of visual attack on a moving target has not been analyzed quantitatively. A servomotor system controlling the movement of a shrimp prey and a high resolution imaging system recording the behavior of the cuttlefish predator, together with the newly developed DeepLabCut image processing system, were used to examine the tactics used by cuttlefish during a visual attack on moving prey. The results showed that cuttlefish visually tracked a moving prey target using mainly body movement, and that they maintained a similar speed to that of the moving prey right before making their tentacular strike. When cuttlefish shot out their tentacles for prey capture, they were able to either predict the target location based on the prey's speed and compensate for the inherent sensorimotor delay or adjust the trajectory of their tentacular strike according to the prey's direction of movement in order to account for any changes in prey position. These observations suggest that cuttlefish use the various visual tactics available to them flexibly in order to capture moving prey, and that they are able to extract direction and speed information from moving prey in order to allow an accurate visual attack.

3.
PLoS One ; 15(2): e0228861, 2020.
Article in English | MEDLINE | ID: mdl-32084146

ABSTRACT

A wireless photovoltaic retinal prosthesis is currently being studied with the aim of providing prosthetic vision to patients with retinitis pigmentosa (RP) and age-related macular degeneration (AMD). The major challenge of a photovoltaic device is its limited power efficiency. Our retinal prosthetic design implements a unique divisional power supply scheme (DPSS) system that provides the electrical power generated by all of the solar cells to only a subset of electrodes at any moment in time. The aim of the present study was to systematically characterize the spatiotemporal integration performance of the system under various DPSS conditions using human subjects and a psychophysical approach. A 16x16 pixels LED array controlled by Arduino was used to simulate the output signal of the DPSS design, and human performance under different visual stimulations at various update frequencies was then used to assess the spatiotemporal capability of retinal prostheses. The results showed that the contrast polarity of the image, image brightness, and division number influenced the lower limit of the update frequency of the DPSS system, while, on the other hand, visual angle, ambient light level, and stimulation order did not affect performance significantly. Pattern recognition by visual persistence with spatiotemporal integration of multiple frames of sparse dots is a feasible approach in retinal prosthesis design. These findings provide an insight into how to optimize a photovoltaic retinal prosthesis using a DPSS design with an appropriate update frequency for reliable pattern recognition. This will help the development of a wireless device able to restore vision to RP and AMD patients in the future.


Subject(s)
Electric Power Supplies , Visual Prosthesis , Adult , Contrast Sensitivity/physiology , Electric Stimulation , Electrodes, Implanted , Healthy Volunteers , Humans , Macular Degeneration/physiopathology , Macular Degeneration/surgery , Pattern Recognition, Visual/physiology , Photic Stimulation , Psychophysics , Retinitis Pigmentosa/physiopathology , Retinitis Pigmentosa/surgery , Solar Energy , Spatio-Temporal Analysis , Visual Perception/physiology , Wireless Technology , Young Adult
4.
Physiol Behav ; 141: 78-84, 2015 Mar 15.
Article in English | MEDLINE | ID: mdl-25592442

ABSTRACT

The present study examined whether footshock can enhance methamphetamine (MAMPH)-induced conditioned suppression and whether this effect involves the dopamine (DA) reward system or hypothalamic-pituitary-adrenal (HPA) axis. We also examined whether the footshock-induced enhancements of MAMPH-induced conditioned suppression are attributable to MAMPH's rewarding or aversive properties. During the footshock phase, all female rats received 0.1mg/kg haloperidol (HAL) and its vehicle (2% tartaric acid solution), or low and high doses of dexamethasone (DEX; 0.5 and 1.0mg/kg) and its vehicle before each footshock (1mA, 2s), or no footshock, in seven trials once per day. The control group did not receive any drugs or footshocks. All of the rats were then allowed 15min access to a 0.1% saccharin solution and then received 2mg/kg MAMPH in five trials once per day. Footshock exhibited an increase in MAMPH-induced taste suppression. The low- and high-dose DEX groups but not the HAL group exhibited a blocking effect of the footshock enhancements of MAMPH-induced taste suppression. The low- and high-dose DEX groups exhibited a significant decrease in corticosterone levels during the footshock treatment phase but not during the testing phase. Altogether, the HPA stress system and not the DA reward system, particularly D2 receptors, appear to mediate the footshock-induced enhancements of MAMPH-induced conditioned taste suppression, which may result from the aversive and not the rewarding properties of MAMPH. The present findings may provide some clinical implications for alternating aversively classical conditioning for psychiatric disorders.


Subject(s)
Conditioning, Classical/drug effects , Dopamine Uptake Inhibitors/pharmacology , Dopamine/metabolism , Hypothalamo-Hypophyseal System/drug effects , Methamphetamine/pharmacology , Pituitary-Adrenal System/drug effects , Animals , Conditioning, Classical/physiology , Corticosterone/blood , Dexamethasone/pharmacology , Dopamine Antagonists/pharmacology , Electroshock , Female , Glucocorticoids/pharmacology , Haloperidol/pharmacology , Hypothalamo-Hypophyseal System/metabolism , Pituitary-Adrenal System/metabolism , Rats , Rats, Wistar
5.
BMC Neurosci ; 15: 3, 2014 Jan 03.
Article in English | MEDLINE | ID: mdl-24387299

ABSTRACT

BACKGROUND: Cortical neurons display network-level dynamics with unique spatiotemporal patterns that construct the backbone of processing information signals and contribute to higher functions. Recent years have seen a wealth of research on the characteristics of neuronal networks that are sufficient conditions to activate or cease network functions. Local field potentials (LFPs) exhibit a scale-free and unique event size distribution (i.e., a neuronal avalanche) that has been proven in the cortex across species, including mice, rats, and humans, and may be used as an index of cortical excitability. In the present study, we induced seizure activity in the anterior cingulate cortex (ACC) with medial thalamic inputs and evaluated the impact of cortical excitability and thalamic inputs on network-level dynamics. We measured LFPs from multi-electrode recordings in mouse cortical slices and isoflurane-anesthetized rats. RESULTS: The ACC activity exhibited a neuronal avalanche with regard to avalanche size distribution, and the slope of the power-law distribution of the neuronal avalanche reflected network excitability in vitro and in vivo. We found that the slope of the neuronal avalanche in seizure-like activity significantly correlated with cortical excitability induced by γ-aminobutyric acid system manipulation. The thalamic inputs desynchronized cingulate seizures and affected the level of cortical excitability, the modulation of which could be determined by the slope of the avalanche size. CONCLUSIONS: We propose that the neuronal avalanche may be a tool for analyzing cortical activity through LFPs to determine alterations in network dynamics.


Subject(s)
Action Potentials , Biological Clocks , Gyrus Cinguli/physiopathology , Nerve Net/physiopathology , Neurons , Seizures/physiopathology , Thalamus/physiopathology , Animals , Cells, Cultured , Feedback, Physiological , Mice , Mice, Inbred C57BL , Neural Inhibition , Neural Pathways/physiopathology
6.
PLoS One ; 8(5): e62952, 2013.
Article in English | MEDLINE | ID: mdl-23690968

ABSTRACT

The thalamus is an important target for deep brain stimulation in the treatment of seizures. However, whether the modulatory effect of thalamic inputs on cortical seizures occurs through the modulation of gap junctions has not been previously studied. Therefore, we tested the effects of different gap junction blockers and couplers in a drug-resistant seizure model and studied the role of gap junctions in the thalamic modulation on cortical seizures. Multielectrode array and calcium imaging were used to record the cortical seizures induced by 4-aminopyridine (250 µM) and bicuculline (5-50 µM) in a novel thalamocingulate slice preparation. Seizure-like activity was significantly attenuated by the pan-gap junction blockers carbenoxolone and octanol and specific neuronal gap junction blocker mefloquine. The gap junction coupler trimethylamine significantly enhanced seizure-like activity. Gap junction blockers did not influence the initial phase of seizure-like activity, but they significantly decreased the amplitude and duration of the maintenance phase. The development of seizures is regulated by extracellular potassium concentration. Carbenoxolone partially restored the amplitude and duration after removing the thalamic inputs. A two-dimensional current source density analysis showed that the sink and source signals shifted to deeper layers after removing the thalamic inputs during the clonic phase. These results indicate that the regulatory mechanism of deep brain stimulation in the thalamus occurs partially though gap junctions.


Subject(s)
Epilepsy, Frontal Lobe/pathology , Epilepsy, Frontal Lobe/physiopathology , Gap Junctions/metabolism , Gyrus Cinguli/pathology , Gyrus Cinguli/physiopathology , Thalamus/physiology , Animals , Carbenoxolone/pharmacology , Drug Resistance , Gap Junctions/drug effects , Gyrus Cinguli/drug effects , Mefloquine/pharmacology , Mice , Mice, Inbred C57BL , Octanols/pharmacology , Spatio-Temporal Analysis , Thalamus/drug effects , Theta Rhythm/drug effects
7.
J Biomed Sci ; 19: 55, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22646813

ABSTRACT

BACKGROUND: N-ethyl-N-nitrosourea mutagenesis was used to induce a point mutation in C57BL/6 J mice. Pain-related phenotype screening was performed in 915 G3 mice. We report the detection of a heritable recessive mutant in meiotic recombinant N1F1 mice that caused an abnormal pain sensitivity phenotype with spontaneous skin inflammation in the paws and ears. METHODS: We investigated abnormal sensory processing, neuronal peptides, and behavioral responses after the induction of autoinflammatory disease. Single-nucleotide polymorphism (SNP) markers and polymerase chain reaction product sequencing were used to identify the mutation site. RESULTS: All affected mice developed paw inflammation at 4-8 weeks. Histological examinations revealed hyperplasia of the epidermis in the inflamed paws and increased macrophage expression in the spleen and paw tissues. Mechanical and thermal nociceptive response thresholds were reduced in the affected mice. Locomotor activity was decreased in affected mice with inflamed hindpaws, and this reduction was attributable to the avoidance of contact of the affected paw with the floor. Motor strength and daily activity in the home cage in the affected mice did not show any significant changes. Although Fos immunoreactivity was normal in the dorsal horn of affected mice, calcitonin gene-related peptide immunoreactivity significantly increased in the deep layer of the dorsal horn. The number of microglia increased in the spinal cord, hippocampus, and cerebral cortex in affected mice, and the proliferation of microglia was maintained for a couple of months. Two hundred eighty-five SNP markers were used to reveal the affected gene locus, which was found on the distal part of chromosome 18. A point mutation was detected at A to G in exon 8 of the pstpip2 gene, resulting in a conserved tyrosine residue at amino acid 180 replaced by cysteine (Y180 C). CONCLUSIONS: The data provide definitive evidence that a mutation in pstpip2 causes autoinflammatory disease in an N-ethyl-N-nitrosourea mutagenesis mouse model. Thus, our pstpip2 mutant mice provide a new model for investigating the potential mechanisms of inflammatory pain.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cytoskeletal Proteins/genetics , Mutagenesis , Mutation/genetics , Pain/genetics , Animals , Disease Models, Animal , Ethylnitrosourea/toxicity , Inflammation/genetics , Mice , Mice, Inbred C57BL , Polymorphism, Single Nucleotide
8.
Mol Pain ; 8: 33, 2012 Apr 26.
Article in English | MEDLINE | ID: mdl-22537828

ABSTRACT

BACKGROUND: Traditional electroencephalography provides a critical assessment of pain responses. The perception of pain, however, may involve a series of signal transmission pathways in higher cortical function. Recent studies have shown that a mathematical method, the neuronal avalanche model, may be applied to evaluate higher-order network dynamics. The neuronal avalanche is a cascade of neuronal activity, the size distribution of which can be approximated by a power law relationship manifested by the slope of a straight line (i.e., the α value). We investigated whether the neuronal avalanche could be a useful index for nociceptive assessment. FINDINGS: Neuronal activity was recorded with a 4 × 8 multichannel electrode array in the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC). Under light anesthesia, peripheral pinch stimulation increased the slope of the α value in both the ACC and S1, whereas brush stimulation increased the α value only in the S1. The increase in α values was blocked in both regions under deep anesthesia. The increase in α values in the ACC induced by peripheral pinch stimulation was blocked by medial thalamic lesion, but the increase in α values in the S1 induced by brush and pinch stimulation was not affected. CONCLUSIONS: The neuronal avalanche model shows a critical state in the cortical network for noxious-related signal processing. The α value may provide an index of brain network activity that distinguishes the responses to somatic stimuli from the control state. These network dynamics may be valuable for the evaluation of acute nociceptive processes and may be applied to chronic pathological pain conditions.


Subject(s)
Models, Neurological , Nerve Net/physiopathology , Neurons/pathology , Nociception/physiology , Anesthesia , Animals , Gyrus Cinguli/pathology , Gyrus Cinguli/physiopathology , Male , Rats , Rats, Sprague-Dawley , Somatosensory Cortex/pathology , Somatosensory Cortex/physiopathology , Thalamus/pathology , Thalamus/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...