Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-22454662

ABSTRACT

Demethoxycurcumin (DMC; a curcumin-related demethoxy compound) has been recently shown to display antioxidant and antitumor activities. It has also produced a potent chemopreventive action against cancer. In the present study, the antiproliferation (using the MTT assay, DMC was found to have cytotoxic activities against GBM 8401 cell with IC(50) values at 22.71 µM) and induced apoptosis effects of DMC have been investigated in human brain malignant glioma GBM 8401 cells. We have studied the mitochondrial membrane potential (MMP), DNA fragmentation, caspase activation, and NF-κB transcriptional factor activity. By these approaches, our results indicated that DMC has produced an inhibition of cell proliferation as well as the activation of apoptosis in GBM 8401 cells. Both effects were observed to increase in proportion with the dosage of DMC treatment, and the apoptosis was induced by DMC in human brain malignant glioma GBM 8401 cells via mitochondria- and caspase-dependent pathways.

2.
Int J Colorectal Dis ; 27(7): 869-78, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22222465

ABSTRACT

PURPOSE: Colorectal cancer (CRC) is the third leading cause of cancer death in Taiwan; it ranks top three in the cancer mortality rate. Curcuminoids are derived from the rhizome of Curcuma longa. It has shown anti-cancer activity and apoptosis induction in a variety of cancer cell lines. This aims to study the potential of Poloxamer 407 as the thermogelling and mucoadhesive polymer for development of a site-targeting delivery system to enhance the localized delivery of curcuminoids to the colorectal cells for CRC chemotherapy. METHODS: The mucoadhesive strength and rheological properties were measured as a function of poloxamer loaded with curcuminoids. RESULTS: The gelation temperature of Poloxamer 407 was found to vary with its concentration and start gelling at 37°C at the concentration of 15.5% (w/v). To ensure gelation at physiological temperature after intra-rectal application, gelation temperature was determined by rheological measurement as well as by its physical appearance. The results indicated that its mucoadhesive strength also shows a dependency on temperature, which appears to be related to the increment in the maximum strength and average strength of the polymer. CONCLUSION: The results have suggested that Poloxamer 407 could be a potential thermogelling and mucoadhesive polymer for the development of a site-targeting colorectal drug delivery system for curcuminoids in colorectal cancer therapy.


Subject(s)
Adhesives/pharmacology , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/prevention & control , Curcumin/therapeutic use , Intestinal Mucosa/drug effects , Materials Testing , Temperature , Aged , Aged, 80 and over , Biocompatible Materials/pharmacology , Cell Death/drug effects , Cell Survival/drug effects , Chemoprevention , Curcumin/pharmacology , Drug Delivery Systems , Female , Gels/chemistry , Humans , Intestinal Mucosa/pathology , Male , Middle Aged , Poloxamer/chemistry , Suppositories/pharmacology
3.
Article in English | MEDLINE | ID: mdl-21804859

ABSTRACT

We have investigated the anticancer effects of the dietary isothiocyanate sulforaphane (SFN) on colorectal cancer (CRC), using primary cancer cells lines isolated from five Taiwanese colorectal cancer patients as the model for colorectal cancer. SFN-treated cells accumulated in metaphase (SFN 6.25 µM) and subG1 (SFN 12.5 and 25 µM) as determined by flow cytometry. In addition, treated cells showed nuclear apoptotic morphology that coincided with an activation of caspase-3, and loss of mitochondrial membrane potential (ΔΨm). Incubations at higher SFN doses (12.5 and 25 µM) resulted in cleavage of procaspase-3 and elevated caspase-2, -3, -8, and -9 activity, suggesting that the induction of apoptosis and the sulforaphane-induced mitosis delay at the lower dose are independently regulated. Daily SFN s.c. injections (400 micromol/kg/d for 3 weeks) in severe combined immunodeficient mice with primary human CRC (CP1 to CP5) s.c. tumors resulted in a decrease of mean tumor weight by 70% compared with vehicle-treated controls. Our findings suggest that, in addition to the known effects on cancer prevention, sulforaphane may have antitumor activity in established colorectal cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...