Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nat Commun ; 13(1): 5583, 2022 09 23.
Article in English | MEDLINE | ID: mdl-36151203

ABSTRACT

Myelin is required for rapid nerve signaling and is emerging as a key driver of CNS plasticity and disease. How myelin is built and remodeled remains a fundamental question of neurobiology. Central to myelination is the ability of oligodendrocytes to add vast amounts of new cell membrane, expanding their surface areas by many thousand-fold. However, how oligodendrocytes add new membrane to build or remodel myelin is not fully understood. Here, we show that CNS myelin membrane addition requires exocytosis mediated by the vesicular SNARE proteins VAMP2/3. Genetic inactivation of VAMP2/3 in myelinating oligodendrocytes caused severe hypomyelination and premature death without overt loss of oligodendrocytes. Through live imaging, we discovered that VAMP2/3-mediated exocytosis drives membrane expansion within myelin sheaths to initiate wrapping and power sheath elongation. In conjunction with membrane expansion, mass spectrometry of oligodendrocyte surface proteins revealed that VAMP2/3 incorporates axon-myelin adhesion proteins that are collectively required to form nodes of Ranvier. Together, our results demonstrate that VAMP2/3-mediated membrane expansion in oligodendrocytes is indispensable for myelin formation, uncovering a cellular pathway that could sculpt myelination patterns in response to activity-dependent signals or be therapeutically targeted to promote regeneration in disease.


Subject(s)
Oligodendroglia , Vesicle-Associated Membrane Protein 2 , Axons/physiology , Myelin Proteins/metabolism , Myelin Sheath/metabolism , Oligodendroglia/metabolism , Vesicle-Associated Membrane Protein 2/genetics , Vesicle-Associated Membrane Protein 2/metabolism
2.
Cell Syst ; 12(2): 159-175.e9, 2021 02 17.
Article in English | MEDLINE | ID: mdl-33382996

ABSTRACT

Induced pluripotent stem cell (iPSC)-derived neural cultures from amyotrophic lateral sclerosis (ALS) patients can model disease phenotypes. However, heterogeneity arising from genetic and experimental variability limits their utility, impacting reproducibility and the ability to track cellular origins of pathogenesis. Here, we present methodologies using single-cell RNA sequencing (scRNA-seq) analysis to address these limitations. By repeatedly differentiating and applying scRNA-seq to motor neurons (MNs) from healthy, familial ALS, sporadic ALS, and genome-edited iPSC lines across multiple patients, batches, and platforms, we account for genetic and experimental variability toward identifying unified and reproducible ALS signatures. Combining HOX and developmental gene expression with global clustering, we anatomically classified cells into rostrocaudal, progenitor, and postmitotic identities. By relaxing statistical thresholds, we discovered genes in iPSC-MNs that were concordantly dysregulated in postmortem MNs and yielded predictive ALS markers in other human and mouse models. Our approach thus revealed early, convergent, and MN-resolved signatures of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Induced Pluripotent Stem Cells/metabolism , Motor Neurons/metabolism , Animals , Disease Models, Animal , Humans , Mice
3.
Brain Res ; 1728: 146601, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31843624

ABSTRACT

Mutations in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis (ALS). Both toxic gain of function and loss of function pathogenic mechanisms have been proposed. Accruing evidence from mouse knockout studies point to a role for C9ORF72 as a regulator of immune function. To provide further insight into its cellular function, we performed a genome-wide synthetic lethal CRISPR screen in human myeloid cells lacking C9ORF72. We discovered a strong synthetic lethal genetic interaction between C9ORF72 and FIS1, which encodes a mitochondrial membrane protein involved in mitochondrial fission and mitophagy. Mass spectrometry experiments revealed that in C9ORF72 knockout cells, FIS1 strongly bound to a class of immune regulators that activate the receptor for advanced glycation end (RAGE) products and trigger inflammatory cascades. These findings present a novel genetic interactor for C9ORF72 and suggest a compensatory role for FIS1 in suppressing inflammatory signaling in the absence of C9ORF72.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , C9orf72 Protein/genetics , Membrane Proteins/genetics , Mitochondrial Proteins/genetics , Clustered Regularly Interspaced Short Palindromic Repeats , Gene Knockout Techniques/methods , Genetic Testing , Humans , RNA-Seq , Synthetic Lethal Mutations/genetics , U937 Cells
4.
Neuron ; 88(5): 892-901, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26637796

ABSTRACT

Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , Brain/pathology , DNA Repeat Expansion/genetics , Frontotemporal Dementia/pathology , Proteins/genetics , Spinal Cord/pathology , Age Factors , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/physiopathology , Animals , Brain/metabolism , C9orf72 Protein , Cells, Cultured , Chromosomes, Artificial, Bacterial/genetics , Chromosomes, Artificial, Bacterial/metabolism , Disease Models, Animal , Frontotemporal Dementia/genetics , Frontotemporal Dementia/physiopathology , Glutamic Acid/pharmacology , Humans , Mice , Mice, Transgenic , Motor Activity/genetics , Muscle Strength/genetics , Neuromuscular Junction/genetics , Neuromuscular Junction/pathology , Neurons/drug effects , Psychomotor Performance/physiology , Spinal Cord/metabolism
5.
Acta Neuropathol ; 129(1): 39-52, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25388784

ABSTRACT

C9orf72 promoter hypermethylation inhibits the accumulation of pathologies which have been postulated to be neurotoxic. We tested here whether C9orf72 hypermethylation is associated with prolonged disease in C9orf72 mutation carriers. C9orf72 methylation was quantified from brain or blood using methylation-sensitive restriction enzyme digest-qPCR in a cross-sectional cohort of 118 C9orf72 repeat expansion carriers and 19 non-carrier family members. Multivariate regression models were used to determine whether C9orf72 hypermethylation was associated with age at onset, disease duration, age at death, or hexanucleotide repeat expansion size. Permutation analysis was performed to determine whether C9orf72 methylation is heritable. We observed a high correlation between C9orf72 methylation across tissues including cerebellum, frontal cortex, spinal cord and peripheral blood. While C9orf72 methylation was not significantly different between ALS and FTD and did not predict age at onset, brain and blood C9orf72 hypermethylation was associated with later age at death in FTD (brain: ß = 0.18, p = 0.006; blood: ß = 0.15, p < 0.001), and blood C9orf72 hypermethylation was associated with longer disease duration in FTD (ß = 0.03, p = 0.007). Furthermore, C9orf72 hypermethylation was associated with smaller hexanucleotide repeat length (ß = -16.69, p = 0.033). Finally, analysis of pedigrees with multiple mutation carriers demonstrated a significant association between C9orf72 methylation and family relatedness (p < 0.0001). C9orf72 hypermethylation is associated with prolonged disease in C9orf72 repeat expansion carriers with FTD. The attenuated clinical phenotype associated with C9orf72 hypermethylation suggests that slower clinical progression in FTD is associated with reduced expression of mutant C9orf72. These results support the hypothesis that expression of the hexanucleotide repeat expansion is associated with a toxic gain of function.


Subject(s)
DNA Methylation , DNA Repeat Expansion , Mutation , Proteins/genetics , Aged , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Brain/metabolism , C9orf72 Protein , Cognition Disorders/diagnosis , Cognition Disorders/genetics , Cognition Disorders/metabolism , Cohort Studies , Cross-Sectional Studies , Female , Frontotemporal Lobar Degeneration/diagnosis , Frontotemporal Lobar Degeneration/genetics , Frontotemporal Lobar Degeneration/metabolism , Genetic Predisposition to Disease , Humans , Male , Middle Aged , Multivariate Analysis , Prognosis , Promoter Regions, Genetic , Proteins/metabolism
6.
Acta Neuropathol ; 128(4): 525-41, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24806409

ABSTRACT

Hexanucleotide repeat expansions of C9orf72 are the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal degeneration. The mutation is associated with reduced C9orf72 expression and the accumulation of potentially toxic RNA and protein aggregates. CpG methylation is known to protect the genome against unstable DNA elements and to stably silence inappropriate gene expression. Using bisulfite cloning and restriction enzyme-based methylation assays on DNA from human brain and peripheral blood, we observed CpG hypermethylation involving the C9orf72 promoter in cis to the repeat expansion mutation in approximately one-third of C9orf72 repeat expansion mutation carriers. Promoter hypermethylation of mutant C9orf72 was associated with transcriptional silencing of C9orf72 in patient-derived lymphoblast cell lines, resulting in reduced accumulation of intronic C9orf72 RNA and reduced numbers of RNA foci. Furthermore, demethylation of mutant C9orf72 with 5-aza-deoxycytidine resulted in increased vulnerability of mutant cells to oxidative and autophagic stress. Promoter hypermethylation of repeat expansion carriers was also associated with reduced accumulation of RNA foci and dipeptide repeat protein aggregates in human brains. These results indicate that C9orf72 promoter hypermethylation prevents downstream molecular aberrations associated with the hexanucleotide repeat expansion, suggesting that epigenetic silencing of the mutant C9orf72 allele may represent a protective counter-regulatory response to hexanucleotide repeat expansion.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , DNA Methylation/genetics , DNA Repeat Expansion/genetics , Frontotemporal Dementia/genetics , Frontotemporal Dementia/pathology , Proteins/metabolism , Aged , Aged, 80 and over , Analysis of Variance , C9orf72 Protein , Cell Line, Transformed , CpG Islands/genetics , DNA Mutational Analysis , Female , Gene Expression Regulation/genetics , Humans , Male , Middle Aged , Mutation/genetics , Promoter Regions, Genetic/genetics , Proteins/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...