Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37715320

ABSTRACT

Significant progress has been made in tumor immunotherapy that uses the human immune response to kill and remove tumor cells. However, overreactive immune response could lead to various autoimmune diseases and acute rejection. Accurate and specific monitoring of immune responses in these processes could help select appropriate therapies and regimens for the patient and could reduce the risk of side effects. Granzyme B (GzmB) is an ideal biomarker for immune response, and its peptide substrate could be coupled with fluorescent dyes or contrast agents for the synthesis of imaging probes activated by GzmB. These small molecules and nanoprobes based on PET, bioluminescence imaging, or fluorescence imaging have proved to be highly GzmB specific and accuracy. This review summarizes the design of different GzmB-responsive imaging probes and their applications in monitoring of tumor immunotherapy and overreactive immune response. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging.


Subject(s)
Immunity , Humans , Granzymes , Biomarkers
2.
ACS Nano ; 17(19): 18818-18831, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37750443

ABSTRACT

Chemotherapeutics have the potential to increase the efficacy of cancer immunotherapies by stimulating the production of damage-associated molecular patterns (DAMPs) and eliciting mutations that result in the production of neoantigens, thereby increasing the immunogenicity of cancerous lesions. However, the dose-limiting toxicity and limited immunogenicity of chemotherapeutics are not sufficient to induce a robust antitumor response. We hypothesized that cancer cells in vitro treated with ultrahigh doses of various chemotherapeutics artificially increased the abundance, variety, and specificity of DAMPs and neoantigens, thereby improving chemoimmunotherapy. The in vitro chemotherapy-induced (IVCI) nanovaccines manufactured from cell lysates comprised multiple neoantigens and DAMPs, thereby exhibiting comprehensive antigenicity and adjuvanticity. Our IVCI nanovaccines exhibited enhanced immune responses in CT26 tumor-bearing mice, with a significant increase in CD4+/CD8+ T cells in tumors in combination with immune checkpoint inhibitors. The concept of IVCI nanovaccines provides an idea for manufacturing and artificial enhancement of immunogenicity vaccines to improve chemoimmunotherapy.


Subject(s)
Antineoplastic Agents , Cancer Vaccines , Neoplasms , Animals , Mice , CD8-Positive T-Lymphocytes , Antigens, Neoplasm , Neoplasms/drug therapy , Immunotherapy
3.
Antonie Van Leeuwenhoek ; 116(10): 1023-1035, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37592017

ABSTRACT

Two Gram-stain-negative, aerobic, motile and short rod strains, designated 4D117T and ZD32-2T, were isolated from the forest soils. Strains 4D117T and ZD32-2T grew optimally at pH 4.0-6.5, 20-33 °C and pH 4.5-7.0, 33 °C, respectively, and both at 0.5% (w/v) NaCl concentration. Strains 4D117T and ZD32-2T shared the highest 16S rRNA gene sequence similarity with P. acidiphila 7Q-K02T (99.1%) and P. ferrariae NBRC 106233T (98.7%), respectively. The genome size and G + C contents of strains 4D117T and ZD32-2T were 9,002,095 bp, 62.9% and 6,974,420 bp, 61.7%, respectively. The dDDH and ANI values between strains 4D117T, ZD32-2T and closely related Paraburkholderia species were in the ranges of 21.9-51.6% and 82.9-94.4%, and 81.7% and 25.4% between themself, respectively. Functional genomic analysis showed both strains were capable of degrading contaminants, such as benzoate, anthranilic acid and catechol for 4D117T, and benzene and catechol for ZD32-2T, indicating that they may have potentials for soil pollutant treatment. The main polar lipids of strains 4D117T and ZD32-2T were phosphatidylglycerol, phosphatidylethanolamine and diphosphatidylglycerol. Strain 4D117T contained C16:0, C19:0 cyclo ω8c and C18:1 ω7c and/or C18:1 ω6c, while strain ZD32-2T had C16:0 and C17:0 cyclo as their major cellular fatty acids (> 10%). Based on the phenotypic characters and genomic data, strains 4D117T and ZD32-2T represent two novel species of genus Paraburkholderia, for which the names Paraburkholderia flagellata sp. nov. (type strain 4D117T = GDMCC 1.2617T = NBRC 115278T) and Paraburkholderia adhaesiva sp. nov. (type strain ZD32-2T = GDMCC 1.2622T = NBRC 115282T) are proposed.


Subject(s)
Burkholderiaceae , RNA, Ribosomal, 16S/genetics , China , Burkholderiaceae/genetics , Catechols , Forests , Soil
4.
Article in English | MEDLINE | ID: mdl-37358894

ABSTRACT

Two novel Gram-stain-negative, aerobic and rod-shaped bacterial strains, designated DHG64T and 4D114T, were isolated from forest soil of Dinghushan Biosphere Reserve, Guangdong Province, PR China. DHG64T grew at 12-37 °C (optimum 33 °C), pH 4.5-10.0 (optimum 6.5-7.5) and in the presence of 0-2.0 % NaCl (w/v); while 4D114T grew at 12-37 °C (optimum 20-33 °C), pH 4.0-7.0 (optimum 4.5-6.0) and in the presence of 0-1.0 % NaCl (w/v). DHG64T and 4D114T showed 97.1-98.0 and 97.5-98.4 % 16S rRNA gene sequence similarities with seven species of the genus Trinickia with validly published names, respectively. In the phylogenetic trees based on 16S rRNA gene and genome sequences, both strains formed a clade with the members of genus Trinickia but well separated from each other. The average nucleotide identity and digital DNA-DNA hybridisation values for the novel strains to all species of the genus Trinickia with validly published names were in the ranges of 80.6-85.0 and 22.4-28.0 %, respectively. DHG64T contained C16 : 0, C17 : 0 cyclo and C19 : 0 cyclo ω8c, while 4D114T had C16 : 0, C17 : 0 cyclo, C19 : 0 cyclo ω8c and summed feature 2 (iso-C16 : 1 I and/or C14 : 0 3-OH) as the major cellular fatty acids. The major polar lipids for strains DHG64T and 4D114T were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C contents of DHG64T and 4D114T were 63.0 and 62.8 mol%, respectively. Genomic analyses indicated that DHG64T and 4D114T may have potential for various applications, such as developing drugs against certain health problems and restoring environments polluted with metal ions and/or benzoate. On the basis of the results of morphological, physiological, biochemical and phylogenetic analyses, strains DHG64T and 4D114T were classified as representing two novel species of the genus Trinickia, for which the names Trinickia mobilis sp. nov. (type strain DHG64T = KACC 21223T = GDMCC 1.1282T) and Trinickia acidisoli sp. nov. (type strain 4D114T = KCTC 82876T = GDMCC 1.2131T) are proposed.


Subject(s)
Burkholderiaceae , Fatty Acids , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sodium Chloride , DNA, Bacterial/genetics , Sequence Analysis, DNA , Base Composition , Soil Microbiology , Bacterial Typing Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...