Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 442: 130066, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36193614

ABSTRACT

Exploration of the mechanisms of cadmium (Cd) activation mediated by the rhizosphere process is important to advance our understanding of Cd accumulation in plants. In this study, two oilseed rape cultivars (L338, L351) with varied Cd accumulation traits were applied and the responses of their rhizosphere ecology to Cd stress were investigated by metabolome and microbiome. The results showed that shoot Cd accumulations in L338 accounted for 54.16% and 64.76% of those in L351 under low and high Cd contamination, respectively. Moreover, the cultivars response of rhizosphere process reflected that the lower pH and higher Cd mobility were assigned to the characters of L351, which were induced by the secretion of carboxylic acid (e.g. Acetaminophen cysteine, N-Fructosyl alliin) and the enrichment of bacterial taxa with the capacities of Cd resistant and activation (e.g. Sphingomonas, Flavobacterium, Neorhizobium, Altererythrobacter). Conclusively, the varied Cd accumulation traits of two oilseed rape cultivars were not only derived from the Cd transfer ability, it would be ascribed to Cd mobility regulated by rhizosphere processes as well. The results provide baseline data and a new perspective on the cultivar response of Cd accumulation, thus maintaining cleaner production of oilseed rape.


Subject(s)
Brassica napus , Soil Pollutants , Cadmium/analysis , Biodegradation, Environmental , Exudates and Transudates/chemistry , Carboxylic Acids , Plant Roots/chemistry
2.
J Hazard Mater ; 423(Pt B): 127115, 2022 02 05.
Article in English | MEDLINE | ID: mdl-34537635

ABSTRACT

Lipids are the structural constituents of cell membranes and play crucial roles in plant adaptation to abiotic stresses. The aim of this study was to use glycerolipidomic and transcriptomic to analyze the changes in lipids metabolism induced by cadmium (Cd) exposure in wheat. The results indicated that Cd stress did not decrease the concentrations of monogalactosyldiacyglycerol (MGDG), phosphatidylcholine (PC), lysophosphatidylcholine (LPC) and phosphatidic acid at 6 h, but decreased digalactosyldoacylglycerol (DGDG), MGDG, PC, phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylserine (PS) and LPC concentrations in wheat root at 24 h. Although the concentrations of highly abundant glycerolipids PC and PE were decreased, the ratios of PC/PE increased thus contributing to wheat adaptation to Cd stress. Cd did not reduce the extent of total lipid unsaturation due to the unchanged concentrations of high abundance species of C36:4, C34:2, C34:3 and C36:6 at 6 h, indicative of their roles in resisting Cd stress. The correlation analysis revealed the glycerolipids species experiencing co-metabolism under Cd stress, which is driven by the activated expression of genes related to glycerolipid metabolism, desaturation and oxylipin synthesis. This study gives insights into the changes of glycerolipids induced by Cd and the roles in wheat adaptation to Cd stress.


Subject(s)
Cadmium , Triticum , Cadmium/toxicity , Phosphatidylcholines , Stress, Physiological , Transcriptome , Triticum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...